MLX91219

High Speed Current Sensor IC with OCD

Datasheet

1. Features and Benefits

- End-of-line programmable sensor
- Ratiometric analog output
- Flexible Supply Voltage with factory selectable 5V or 3.3V mode
- Measurement range from ±12.5 to ±400mT
- High speed sensing
 - DC to 400kHz bandwidth
 - 2μs response time
- High linearity down to ±0.5% full scale
- Low noise
- AEC-Q100 Grade 0 Automotive Qualification
- Very low thermal drift for wide temperature range
 - Offset drift (<5mV)
 - Sensitivity drift (<1%)
- Internal overcurrent detection
- RoHS compliant
- Available in SIP4-VA (MSL-1) and SOIC8 packages (MSL-3)

2. Application Examples

- High Voltage Traction Motor Inverter
- 48V Boost Recuperation Inverter
- DCDC Converter
- Smart Battery Junction Boxes
- Smart Fuse Overcurrent Detection
- Redundant monitoring of Battery Management System (BMS)

3. Description

The MLX91219 is a monolithic Hall-effect sensor which is sensitive to the flux density applied orthogonally to the IC surface. The sensor provides an analog output voltage proportional to the applied magnetic flux density.

The transfer characteristic of the MLX91219 is factory trimmed over temperature, and is programmable (offset, sensitivity, filtering, internal overcurrent threshold) during end-of-line customer calibration. With the 400kHz bandwidth and fast response time, it is particularly adapted for high speed applications such as inverters and converters where fast response time due to fast switching is required.

In a typical current sensing application, the sensor is used in combination with a ring shaped soft ferromagnetic core. This core is recommended to be laminated for high bandwidth applications. The MLX91219 is placed in a small air gap and the current conductor — a bus bar or a cable — is passed through the inner part of the ferromagnetic ring. On the one hand the ring concentrates and amplifies the magnetic flux seen by the sensor IC, and at the same time it attenuates external magnetic field disturbances.

Figure 1. Typical Current Sensing Application

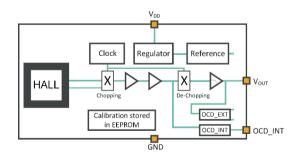


Figure 2. General Block Diagram

Document 390109121901

Contents

1. Features and Benefits	1
2. Application Examples	1
3. Description	1
4. Ordering Information	4
5. Functional Diagram	6
6. Glossary of Terms	8
7. Pin Definitions and Descriptions	8
7.1. SIP-4 VA Package	8
7.2. SOIC8 package	9
8. Absolute Maximum Ratings	10
9. General Electrical Specifications	11
10. Magnetic specification	11
Analog output specification	12
10.1. SIP-4 VA Accuracy specifications	12
10.2. SOIC8 Accuracy specifications	13
10.3. Timing specifications	14
11. Overcurrent Detection Specification	15
11.1. General	15
11.2. Electrical Specifications	16
11.3. Timing Specifications	16
11.4. Internal Overcurrent Detection Principle	17
11.5. External Overcurrent Detection Principle	17
12. Recommended Application Diagram	18
12.1. SIP-4 VA Package	18
12.2. SOIC8 package	19
13. Standard Information	20
14. ESD Precautions	21
15. Packaging information: SIP4-VA	21
15.1. Sensor active measurement direction and magnetic center	21
15.2. Package marking & Hall plate position	21
15.3. VA Straight leg (MLX91219LVA-ARA-xxx-xx)	22
15.4. Trim and form-variant TF-VA-2L-1.27-5.34-91.3-4.3	23

MLX91219 High Speed High Accuracy Current Sensor IC with OCD

15.5. Trim and form-variant TF-VA-2L-1.27-3.7-91.3-4.3	24
15.6. Trim and form-variant TF-VA-2L-1.27-1.68-91.8-3	25
15.7. Trim and form-variant TF-VA-ZB-1.27-2.15	26
16. Packaging information: SOIC8	27
16.1. Sensor active measurement direction and magnetic center	27
16.2. Package marking	27
16.3. Package dimensions	28
17. Contact	29
18. Disclaimer	30

4. Ordering Information

Product Code	Temperature	Package	Option Code	Packing Form	Typical Sensitivity	Supply Voltage	OCD Level
MLX91219	L	VA	AAA-500	CR	7 mV/mT	5V	136 %FS
MLX91219	L	VA	AAA-501	RE	10mV/mT	5V	136 %FS
MLX91219	L	DC	ARA-501	RE	10mV/mT	5V	142 %FS
MLX91219	L	VA	AAA-502	CR	15mV/mT	5V	136 %FS
MLX91219	L	VA	AAA-503	CR	25mV/mT	5V	136 %FS
MLX91219	L	VA	AAT-505	RE	10mV/mT	5V	90 %FS

Table 1: Available ordering codes.

Legend:

Temperature Code	L	from -40°C to 150°C ambient temperature								
Daalaasa Cada	VA	"VA" for SIP-4 VA package								
Package Code	DC	"DC" for SOIC8 package	'DC" for SOIC8 package							
	Ахх-ххх	"A" for Silicon revision	"A" for Silicon revision							
	хАх-ххх	"A" for ratiometric output (only for S	SIP-4 VA package)							
	xRx-xxx	"R" for fixed output (only for SOIC8 p	package)							
	хFх-ххх	"F" for fixed output (only for SOIC8 p	package)							
Option Code	xxA-xxx xxR-xxx xxS-xxx	Default straight leads TF-VA-2L-1.27-5.34-91.3-4.3 TF-VA-2L-1.27-3.7-91.3-4.3	xxA-xxx xxS-xxx							
	xxT-xxx xxZ-xxx	TF-VA-2L-1.27-3.7-91.8-4.5 TF-VA-2L-1.27-1.68-91.8-3 TF-VA-ZB-1.27-2.15	xxT-xxx							
	xxx-3xx xxx-5xx	"3" for 3.3 V supply, bipolar output "5" for 5 V supply, bipolar output								
	xxx-x00 xxx-x01		vercurrent detection of 128 %full scale overcurrent detection of 128 %full scale							
Packing Form	CR RE SP	Carton Reel – Radial taping Plastic Tape on Reel Sample pack								
Ordering Example	MLX91219 Co	/A-AAA-500-CR" nventional Hall current sensor in SIP4- sitivity 7 mV/mT. 5V Supply, bipolar ra	-VA package, temperature range -40°C tiometric output. Parts delivered in							

Table 2: Legend ordering codes.

Melexis is continuously expanding its product portfolio by adding new option codes to better meet the needs of our customer's applications. This table is being updated frequently, please go to the Melexis website to download the latest version of this datasheet. For custom transfer characteristics, please contact your local Melexis Sales representative or distributor.

5. Functional Diagram

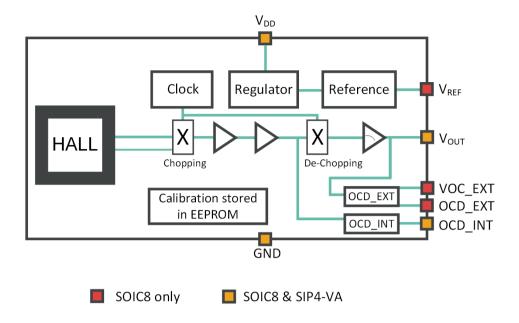


Figure 3: Block Diagram of the MLX91219.

Ratiometric Mode

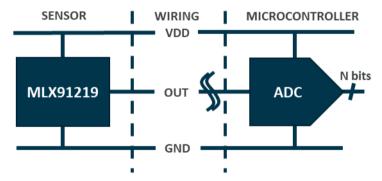


Figure 4: Schematic of ratiometric mode

No matter if the V_{DD} line is at 5V or deviating +/-10%, the ADC code for a given measured current will always be the same as the ADC is supplied by the same voltage as the sensor. The sensor has a sensitivity expressed in $\%V_{DD}/A$.

Differential or Fixed Mode(1)

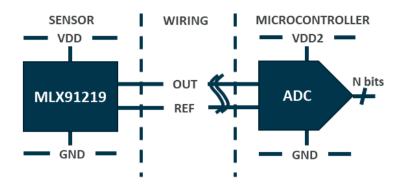


Figure 5: Schematic of fixed mode

In this particular case the ADC does not necessarily share the same supply voltage with the sensor. For this reason, the sensor is calibrated with an absolute sensitivity regardless of the actual supply voltage. The output signal can be reconstructed by taking the difference between the output and the reference voltage from the IC. The ADC gets these two signals as inputs for establishing the sensed current accurately, and is not influenced by the supply voltage differences between both sensor and microcontroller, if applicable. Only available in SOIC8 package.

Parameter	Ratiometric Mode	Differential or Fixed Mode
Output Signal	V _{OUT} [%V _{DD}] Example: output is 2.5V when supply is 5V → output is then $50\%V_{DD}$. If the supply (V _{DD}) increases with 5% to 5.25V the sensor output will (for the same measured input current) scale proportionally with the supply voltage, becoming 2.625V, but as a percentage (i.e. ratiometrically seen) it remains at 50% of V _{DD} .	V_{OUT} - V_{REF} [V] Example: output is 2.501V and V_{REF} is 2.501V when supply is 5V. When the supply voltage is increasing to 5.1V due to supply system variation, the sensor will still maintain the same "fixed" output values V_{OUT} and V_{REF} .
Offset	$V_{OUT}[OA] = 50 [\%V_{DD}]$ (factory trimmed)	V_{REF} = 2.5 [V] (factory trimmed) $V_{OUT}[0A]-V_{REF}$ = 0 [V]
Offset ratiometric	Yes	No
Sensitivity	[%V _{DD} /A]	[mV/A]
Sensitivity ratiometric	Yes	No
Measured Current	(V _{OUT} -V _{OUT} [0A]) / Sensitivity	(V _{OUT} -V _{REF}) / Sensitivity

Table 3: Parameters of differential and fixed modes

(1) Only available in SOIC8 package. More information can be found in Application Note ANCurrent_sensors_gen2_ReferencePin on www.melexis.com

6. Glossary of Terms

Terms	Definition
ТС	Temperature Coefficient
FS	Full Scale, output referred. Corresponds to 2V excursion around 2.5V at 5V supply or 1.25V excursion from 1.65V at 3.3V supply for bipolar designs
T, mT	Tesla, milliTesla = units for the magnetic flux density
G	Gauss = unit for the magnetic flux density [1mT = 10G]
OCD	Overcurrent Detection
MSL	Moisture Sensitivity Level

Table 4: Glossary of Terms

7. Pin Definitions and Descriptions

Note: MLX91219 is not pin-to-pin compatible with MLX91209 or MLX91217.

7.1. SIP-4 VA Package

Pin #	Name	Туре	Description
1	VDD	Supply	Supply voltage
2	OUT	Analog Output	Output voltage (measurement)
3	OCD_INT	Analog Output	Overcurrent detection based on internal threshold
4	GND	Supply	Ground voltage

Table 5: Pin definitions and descriptions.

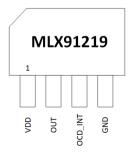


Figure 6:Pinout of SIP4-VA package.

7.2. SOIC8 package

Pin #	Name	Туре	Description
1	VREF	Analog	Reference voltage
2	OUT	Analog Output	Output voltage (measurement)
3	GND	GND Supply Ground voltage	
4	VDD	Supply	Supply voltage
5	NC	-	Not connected
6	OCD_EXT	Analog Output	Overcurrent detection based on external threshold
7	OCD_INT	Analog Output	Overcurrent detection based on internal threshold
8	VOC_EXT	Analog Input	External threshold for the OCD

Table 6: Pin definitions and descriptions.

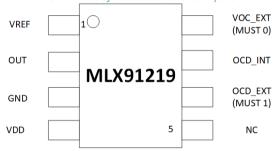


Figure 7: Pinout of SOIC8 package.

8. Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods of time may affect device reliability.

Parameter	Symbol	Value	Unit
Positive Supply Voltage (overvoltage)	V_{DD}	+8	V
Positive Pin Voltage ¹	V_{PIN}	$V_{DD} + 0.3$	V
Output Short Circuit Current to GND	I _{SHORT_GND}	-100	mA
Output Short Circuit Current to V _{DD}	I _{SHORT_VDD}	60	mA
Reverse Pin Voltage ¹	V_{min_REV}	GNDv-0.3	V
Output Sinking Current	I_{out_max}	50	mA
Maximum Junction Temperature	T_{j_MAX}	165	°C
Operating Ambient Temperature Range	T _A	-40 to +150	°C
Storage Temperature Range	Ts	-55 to +165	°C
Human Body ESD Protection	ESD _{HBM}	2	kV
Charged Device Model ESD Protection	ESD _{CDM}	500	V

Table 7: Absolute maximum ratings.

¹ Except V_{DD} and GND

9. General Electrical Specifications

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed devices unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Nominal Supply Voltage	V_{DD}	MLX91219Lxx-Axx-5xx MLX91219Lxx-Axx-3xx	4.5 3.135	5 3.3	5.5 3.465	V
Positive Supply Voltage (maintaining application mode)	V_{DD}			6.5		V
Supply Current	I_{DD}	Without R_{LOAD} on output, in application mode V_{DD} = 5 V V_{DD} = 3.3 V		15.5 15	19 18	mA
V _{OUT} Output Resistance	R _{OUT}	$V_{OUT} = 50\%V_{DD}$, $I_{LOAD} = 10 \text{ mA}$		1	5	Ω
Output Capacitive Load	C_{LOAD}	Output amplifier stability is optimized for this typical value	0	4.7	6	nF
Output Leakage current	I _{LEAK}	High impedance mode, $T_A=150^{\circ}C$		6	20	μΑ
Output Voltage Linear Swing	$V_{\text{OUT_LSW}}$	V _{DD} > 4.6 V for Fixed Mode versions	10		90	$%V_{DD}$

Table 8: General electrical parameters.

10. Magnetic specification

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Operational Magnetic Field Range	B _{OP}				±400	mT
Linearity Error (Magnetic)	NL	B within B_{OP} , $T_A = 25$ °C			±0.5	%FS
Programmable Sensitivity	Sprog	Generic part MLX91219LVA-AAA-500 MLX91219LVA-AAA-501 MLX91219LDC-ARA-501 MLX91219LVA-AAA-502 MLX91219LVA-AAA-503 MLX91219LVA-AAT-505	5 6.5 6.5 6.5 6.5 16 6.5	7 10 10 15 25	105 22.5 22.5 22.5 22.5 25 55 22.5	mV/mT
Sensitivity Programming Resolution	Sres	$B = B_{OP}$		0.5		%

Table 9: Magnetic specification.

Analog output specification

10.1. SIP-4 VA Accuracy specifications

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Voltage Output Quiescent	V_{OQ}	No magnetic field applied, T _A =25°C	-5		5	mV
Ratiometric Offset Error ²	ΔR_{VOQ}	$V_{DD} = 5V$ $V_{DD} = 3.3V$		1.6 1		mV/%V _{DD}
Thermal Offset Drift ³	$\Delta^T V_{OQ}$	$T_A = -40 \text{ to } 125^{\circ}\text{C}$ $T_A = -40 \text{ to } 150^{\circ}\text{C}^4$	-5	±5	5	mV
Total Offset drift ⁵	ΔV_{OQ}			±6		mV
Ratiometric Sensitivity Error ²	$\Delta^R S$			0.16		%/%V _{DD}
Thermal Sensitivity Drift ³	$\Delta^T S$	$T_A = -40$ °C to 125°C $T_A = -40$ °C to 150°C ⁴	-1	±1	1	%S
Total Sensitivity Drift ⁵	ΔS			±1.5		%S
Input referred noise spectral density	N _{SD}	within BW = 1 400kHz, Max Gain		210		nT/VHz

Table 10: Accuracy specifications – analog parameters.

The accuracy specifications are defined for the factory calibrated sensitivity. The achievable accuracy is dependent on the user's end-of-line calibration. Resolution for offset and offset drift calibration is better than 0.05%V_{DD}. Trimming capability is higher than measurement accuracy. End-user calibration can therefore increase the accuracy of the system.

² Ratiometry Error is verified at maximum V_{DD} deviation (5% V_{DD} at 3.3V and 10% V_{DD} at 5V) over temperature in production. Typical values are the maximum mean ±3 sigma out of all characterized lots.

³ Performance after factory trimming.

 $^{^4}$ Based on results from AEC-Q003 Characterization. Typical values are the maximum mean ± 3 sigma out of all characterized lots.

 $^{^5}$ After 1000h HTOL at TA = 155°C with respect to after pre-conditioning at TA = 35°C. Pre-conditioning is performed with MSL level 3 based on J-STD-020. Typical values are the highest average ±3 sigma across all qualification lots.

10.2. SOIC8 Accuracy specifications

Operating Parameters T_A = -40 to 150°C, V_{DD}=5 V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Voltage Reference	V_{REF}	T_A =25°C, xFx-5xx (fixed) versions T_A =25°C, xFx-3xx (fixed) versions		2.5 1.65		V
Thermal Reference Drift	ΔT_{VREF}	Variation versus 25°C, for fixed output			±150	ppm/°C
Non-ratiometric VREF Error	ΔV_{REF}	Fixed mode devices (only SOIC8)	-3		3	mV
Voltage Output Quiescent	Voq	No magnetic field applied, T _A =25°C	-5		5	mV
Ratiometric Offset Error ⁶	ΔR_{VOQ}	$V_{DD} = 5V$ $V_{DD} = 3.3V$		1.6 1		mV/%V _{DD}
Thermal Offset Drift ⁷	$\Delta^T V_{OQ}$	$T_A = -40 \text{ to } 125^{\circ}\text{C}$ $T_A = -40 \text{ to } 150^{\circ}\text{C}^8$	-5	±6	5	mV
Total Offset drift ⁹	ΔV_{OQ}			±6		mV
Ratiometric Sensitivity Error ²	$\Delta^{R}S$			0.16		%/%V _{DD}
Thermal Sensitivity Drift ³	$\Delta^{T}S$	$T_A = -40$ °C to 125°C $T_A = -40$ °C to 150°C ⁴	-1	±1.3	1	%S
Total Sensitivity Drift ⁵	ΔS			±1.5		%S
Input referred noise spectral density	N_{SD}	within BW = 1 400kHz, Max Gain		210		nT/√Hz

Table 11: Accuracy specifications – analog parameters.

The accuracy specifications are defined for the factory calibrated sensitivity. The achievable accuracy is dependent on the user's end-of-line calibration. Resolution for offset and offset drift calibration is better than 0.05%V_{DD}. Trimming capability is higher than measurement accuracy. End-user calibration can therefore increase the accuracy of the system.

⁶ Ratiometry Error is verified at maximum V_{DD} deviation (5% V_{DD} at 3.3V and 10% V_{DD} at 5V) over temperature in production. Typical values are the maximum mean ±3 sigma out of all characterized lots.

⁷ Performance after factory trimming.

 $^{^8}$ Based on results from AEC-Q003 Characterization. Typical values are the maximum mean ± 3 sigma out of all characterized lots.

 $^{^9}$ After 1000h HTOL at TA = 155°C with respect to after pre-conditioning at TA = 35°C. Pre-conditioning is performed with MSL level 3 based on J-STD-020. Typical values are the highest average ±3 sigma across all qualification lots.

10.3. Timing specifications

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Step Response Time	T_{RESP}	Delay between the input signal reaching 90% and the output reaching 90% (see Figure 8)			2	μs
Bandwidth	BW	-3dB, TA =25°C, SF=1 (default) SF=2 SF=3		400 200 100		kHz
Power on Delay	T_POD				1	ms

Table 12: Timing specifications of the high-speed analog output

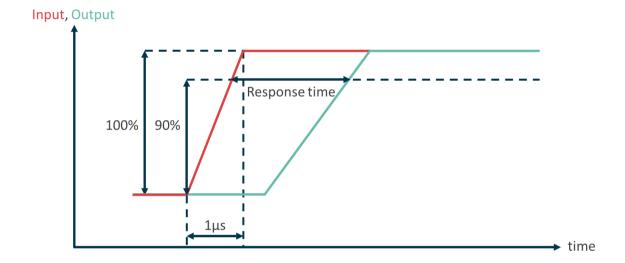


Figure 8: Response Time definition

11. Overcurrent Detection Specification¹⁰

11.1. General

The MLX91219 provides two OCD features (called internal and external) that allow the detection of overcurrent events. The internal OCD (OCD $_{INT}$) is available in both packages SIP4-VA and SOIC8, while the external OCD (OCD $_{EXT}$) is only available in SOIC8 package. When an overcurrent event occurs, the OCD pins are pulled to ground. During normal operation the OCD voltage remains at V_{DD} . If not used, OCD pins can be connected to GND.

The two OCD functions are able to react to an overcurrent event within few μ s of response time. To avoid false alarm, the overcurrent has to be maintained for at least 1μ s for the detection to occur. After detection by the sensor the output flag is maintained for 10μ s of dwell time. This allows the overcurrent to be easily detected at microcontroller level.

The following table offers a comparison between OCD_{INT} and OCD_{EXT}:

Description	OCD _{INT}	OCD _{EXT}
Typical Application	Short-circuit detection	Out-of-range detection
Overcurrent effect	OCD _{INT} pin to GND	OCD _{EXT} pin to GND
Detection mode	Bidirectional	Unidirectional / bidirectional
Threshold trimming	EEPROM	Voltage divider on VOC _{EXT}
Availability in package	SIP4-VA, SOIC8	SOIC8

Table 13: Comparison between OCD_{INT} and OCD_{EXT}

Revision 003 - 3 October 2022

¹⁰ More information can be found in Application Note ANCurrent_sensors_gen2_OverCurrentDetection on www.melexis.com.

11.2. Electrical Specifications

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OCD_INT Internal ON Resistance	$R_{ON_OCD_INT}$	I_{SINK} = 1 mA	60	90	150	Ω
OCD_EXT Internal ON Resistance	$R_{ON_OCD_EXT}$	I_{SINK} = 1 mA	160	190	280	Ω
VOC_EXT Voltage Range V _{DD} = 5 V, 5xx versions	VOC _{EXT_5V}	RS = 0 , Bidirectional RS = 3, Unidirectional	0.5 0.9		2.0 4.5	V
VOC_EXT Voltage Range V _{DD} = 3.3 V, 3xx versions	VOC _{EXT3V3}	RS = 1, Bidirectional RS = 3, Unidirectional	0.5 0.74		1.525 2.9	V
OCD _{INT} accuracy	OCD _{INT}	Ratiometric output ¹¹		±10		%Thr ¹²
OCD _{EXT} accuracy	OCD_{EXT}			±1.5		%FS

Table 14: Electrical Specifications OCD

11.3. Timing Specifications

Operating Parameters $T_A = -40$ to 150°C, $V_{DD}=5$ V or 3.3 V factory trimmed unless otherwise specified.

Parameter	Test Conditions	Min	Тур	Max	Units
OCD _{INT} response time	programmable		1.4 2.1		μs
OCD _{EXT} response time			10		μs
OCD _{INT} required Input holding time			0.5		μs
OCD _{EXT} required Input holding time			10		μs
OCD _{INT} output dwell time		7		14	μs
OCD _{EXT} output dwell time			10		μs

Table 15: OCD_{INT} and OCD_{EXT} timing specifications

Revision 003 - 3 October 2022

 $^{^{11}}$ OCD_{INT} threshold will not scale with VDD variation (in ratiometric output mode) therefore at lower supply voltage results in a higher OCD_{INT} threshold and vice versa. VDD variation should be accounted for when defining the OCD threshold.

The error of OCD_{INT} is expressed as percentage of the threshold value. Example: if the nominal threshold is 282mT, the typical threshold of OCD_{INT} will be in the range between 253.8mT and 310.2

11.4. Internal Overcurrent Detection Principle

The internal OCD takes the threshold voltage values predefined in the EEPROM and does not require any extra components. The OCD_{INT} implementation allows detecting overcurrent outside of the output measurement range of the sensor and is therefore suitable for large current peaks as occurring during short-circuit. If the theoretical sensor output overcomes the OCD_{INT} voltage threshold, the overcurrent event is flagged on OCD_{INT} pin. The default OCD threshold voltages are defined as follows, but other values can be set on request.

Sensor reference	Typical Sensitivity [mV/mT]	OCD _{INT} Threshold Current [%FS]
MLX91219LVA-AAA-500	7	136
MLX91219LVA-AAA-501	10	136
MLX91219LDC-ARA-501	10	142
MLX91219LVA-AAA-502	15	136
MLX91219LVA-AAA-503	25	136
MLX91219LVA-AAT-505	10	90

Table 16: OCD_{INT} thresholds

	Sensor configuration	Min [% FS]	Max [% FS]
OCD _{INT} Threshold	$V_{DD} = 5V / V_{REF} = 2.5V$	24	221

Table 17: OCD_{INT} factory programmable range

11.5. External Overcurrent Detection Principle

The external OCD uses the voltage applied on VOC_{EXT} pin as threshold voltage. This translates into an overcurrent threshold depending on the sensitivity of the sensor. A voltage divider on VOC_{EXT} allows defining the threshold voltage in a custom way. Depending on the voltage divider configuration, the OCD_{EXT} can be used either in bidirectional or unidirectional mode. The External OCD threshold is defined within the measurement range of the sensor output. This feature is then suitable for out-of-range detection where the OCD threshold remains close to the nominal current. It offers a better accuracy than OCD_{INT} but the response is slower. The below table presents the unidirectional and bidirectional external OCD configurations. Please refer to section 13 for more details about the application diagram and the recommended resistances.

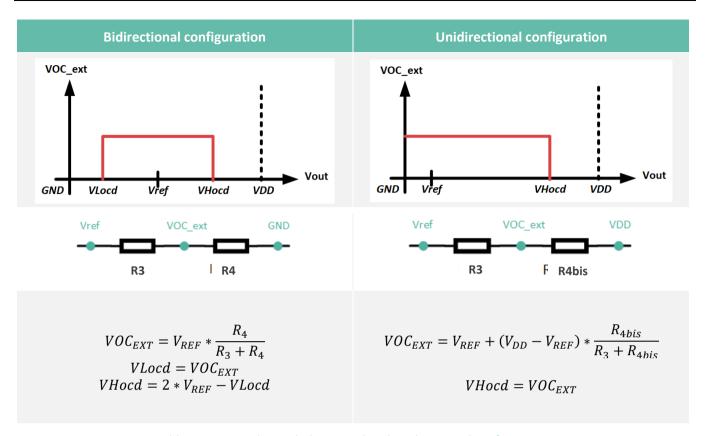


Table 18: External OCD, bidirectional and unidirectional configurations

12. Recommended Application Diagram

12.1. SIP-4 VA Package

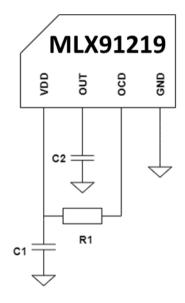


Figure 9: Application Diagram for SIP-4 VA package

Part	Description	Value	Unit
C1	Supply capacitor, EMI, ESD	47	nF
C2	Decoupling, EMI, ESD	4.7	nF
R1	Internal OCD resistor	10	kΩ

Table 19: Resistor and capacitor values for SIP-4 VA package

12.2. SOIC8 package

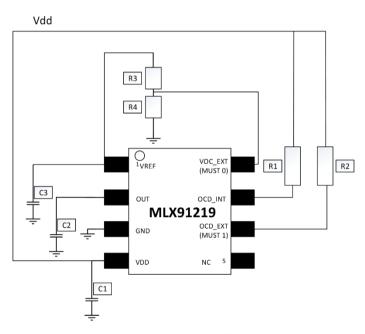


Figure 10: Application Diagram for SOIC8 package

Part	Description	Value	Unit
C1	Supply capacitor, EMI, ESD	47	nF
C2	Decoupling, EMI, ESD	4.7	nF
C3	Decoupling, EMI, ESD	47	nF
R1	Internal OCD resistor	10	kΩ
R2	External OCD resistor	10	kΩ
R3/R4/R4bis	Uni-/Bidirectional OCD customized ratio	-	kΩ

Table 20: Resistor and capacitor values for SOIC8 package

13. Standard Information

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Soldering by iron or other methods that require a peak temperature equal or above 350degC are not allowed.

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

EIA/JEDEC JESD22-B102 and EN60749-21
 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc.) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (https://www.melexis.com/en/quality-environment/soldering).

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website (https://www.melexis.com/en/quality-environment).

For package technology embedding trim and form post-delivery capability, Melexis recommends to consult the dedicated trim and form recommendation application note: <u>Lead trimming and forming recommendations</u>.

14. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

15. Packaging information: SIP4-VA

15.1. Sensor active measurement direction and magnetic center

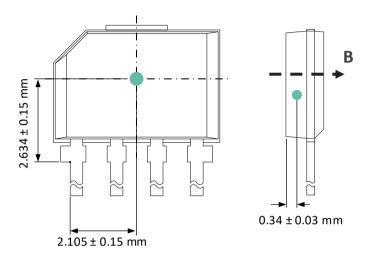


Figure 11: VA/SIL-4L Magnetic center and sensor's active measurement direction B

15.2. Package marking & Hall plate position

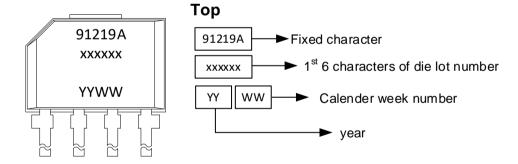
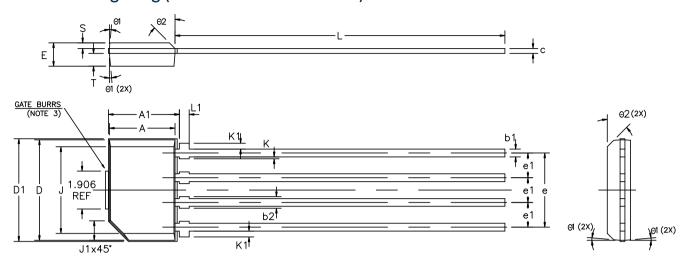



Figure 12. VA/SIP 4L (single in-line package) / 18mm lead length - Package Information

Document 390109121901

15.3. VA Straight leg (MLX91219LVA-ARA-xxx-xx)

0,44001.0	DIMENSIC	NS IN MIL	LIMETERS
SYMBOLS	MIN	NOM	MAX
Α	3.30	3.38	3.46
A1	3.63	3.71	3.79
D	5.08	5.16	5.24
D1	5.33	5.38	5.43
E	1.10		1.20
J	4.10	4.30	4.50
J1		1.00 REF	
К	0.00		0.15
K1	0.25	0.30	0.35
L	17.5	18.0	18.5
L1	0.48	0.53	0.58
S	0.24		0.29
Т	0.61		0.66
b1	0.35		0.48
b2	0.40		0.60
С	0.18		0.34
е	3.76		3.86
e1	1.22	1.27	1.32
Θ1		5° REF	
Θ2		45° REF	

Note:

- 1. DIMENSIONS "A" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS AND GATE BURRS.
- 2. DIMENSIONS "A1" DOES NOT INCLUDE GATE BURRS BUT INCLUDES MOLD FLASH AT BOTH ENDS.
- 3. MOLD GATE BURRS SHALL NOT EXCEED 0.15 mm MEASURED FROM EDGE OF MOLD FLASH (FLANGE).
- 4. DIMENSION "D1" INCLUDES MOLD FLASH AT BOTH ENDS.
- 5. LEAD PLATING; MATTE TIN PLATING THICKNESS 7.62 15.42 um.
- 6. THE LEADS MAY BE SLIGHTLY DEFORMED DURING TRANSPORTATION IF PACKED IN BULK (BAG), AFFECTING e1 DIMENSION. IT IS RECOMMENDED TO ORDER RADIAL TAPE (REEL OR AMMOPACK) IF SUCH DEFORMATION IS CRITICAL FOR THE LEAD FORMING PROCESS, EVEN IF MANUAL LOADING INTO THE TOOL IS FORESEEN.

Figure 13: VA Straight leg

15.4. Trim and form-variant TF-VA-2L-1.27-5.34-91.3-4.3

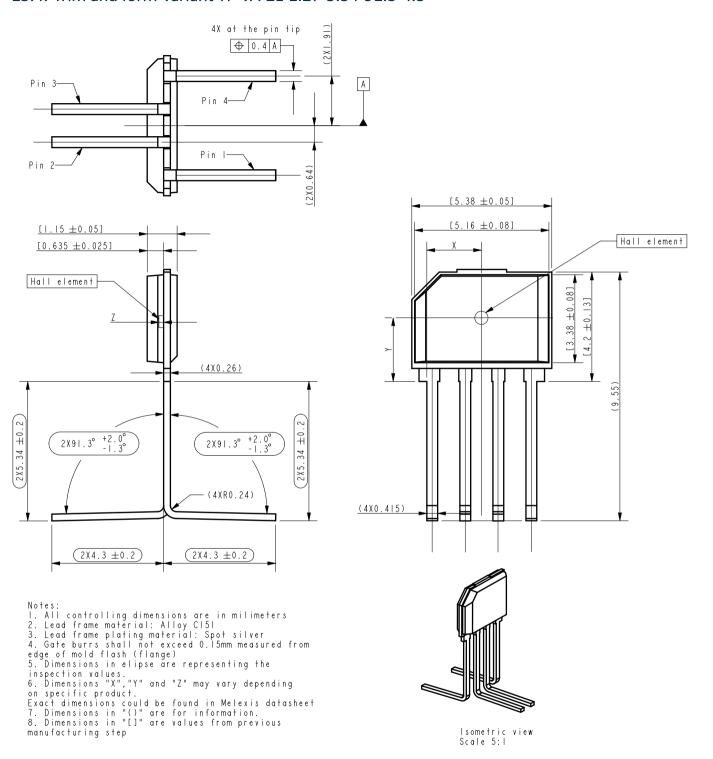


Figure 14: Trim and form type: 90° 2x2x91.3 (h=5.34), bending-STD2 (AAR-xxx)

15.5. Trim and form-variant TF-VA-2L-1.27-3.7-91.3-4.3

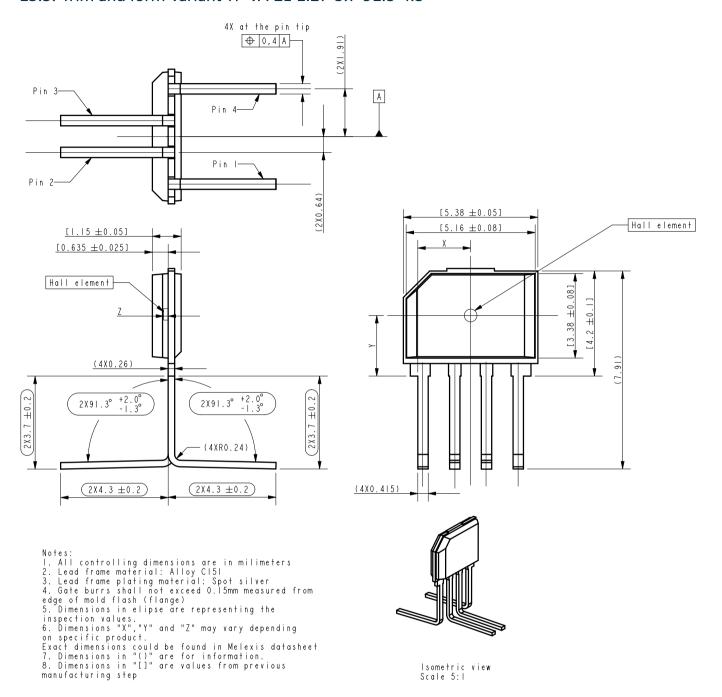


Figure 15: Trim and form type: 90° 2x2x91.3 (h=3.7), bending-STD3 (AAS-xxx)

15.6. Trim and form-variant TF-VA-2L-1.27-1.68-91.8-3

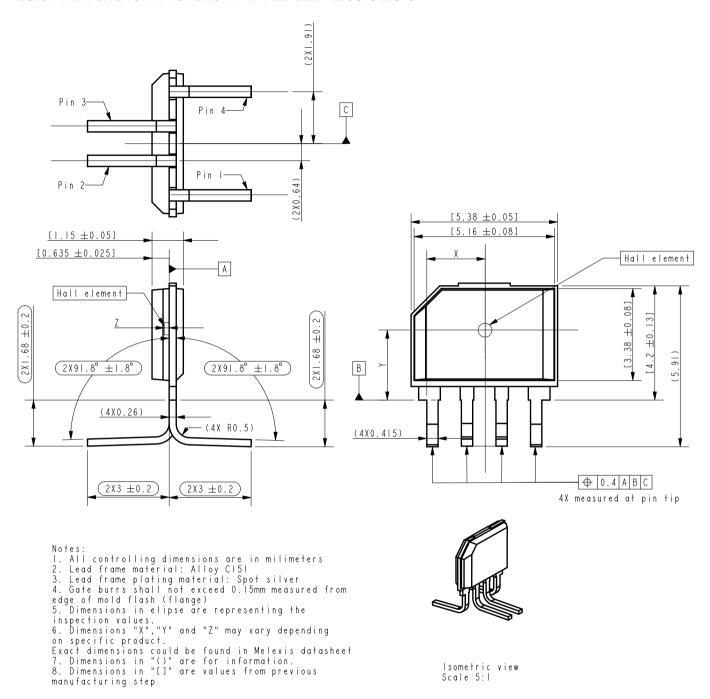


Figure 16: Trim and form type: 90° 2x2x91.8 (h=1.68), bending-STD4 (AAT-xxx)

15.7. Trim and form-variant TF-VA-ZB-1.27-2.15

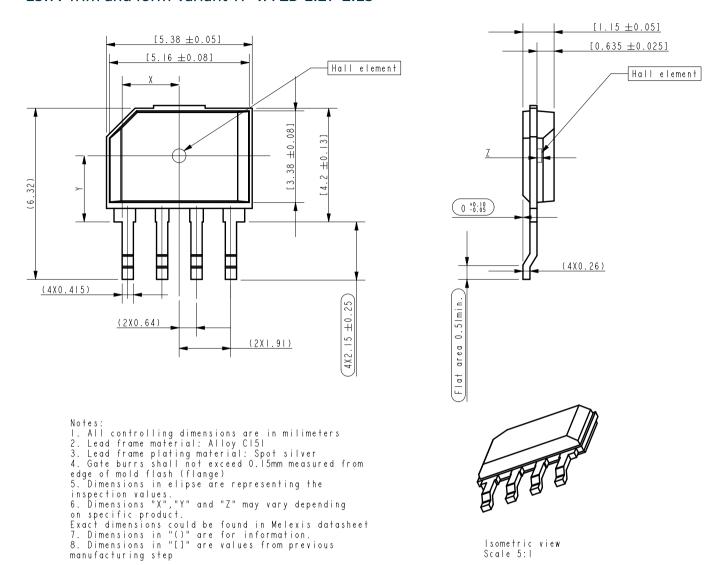


Figure 17: Trim and form SMD style TFT4K1 (AAZ-xxx)

16. Packaging information: SOIC8

16.1. Sensor active measurement direction and magnetic center

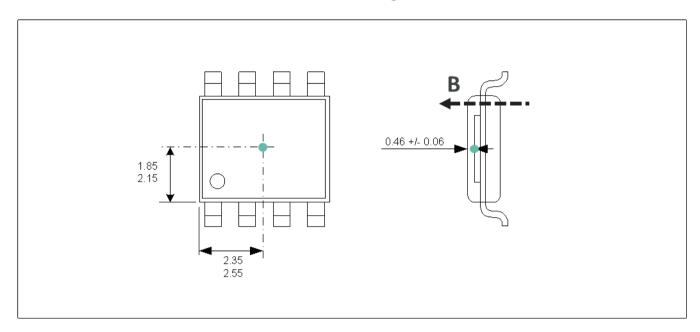


Figure 18: VA/SIL-4L Magnetic center and sensor's active measurement direction B

16.2. Package marking

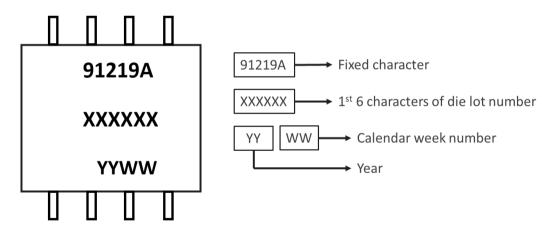


Figure 19. SOIC8 package marking

16.3. Package dimensions

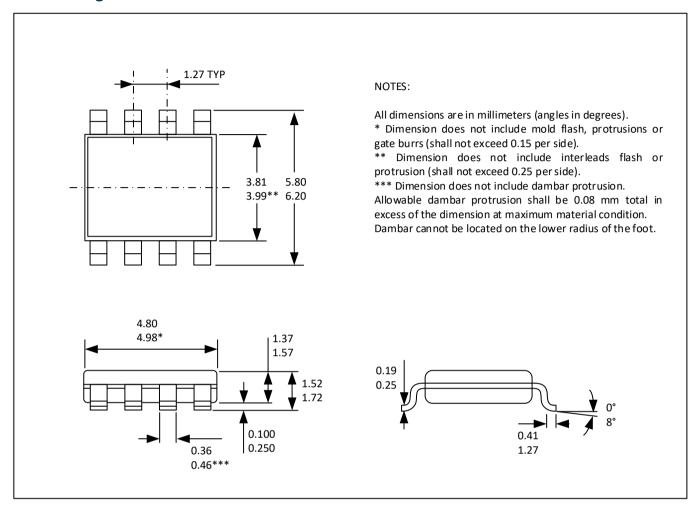


Figure 20: SOIC8 package

MLX91219 High Speed High Accuracy Current Sensor IC with OCD

Datasheet

17. Contact

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Email: sales_europe@melexis.com
Americas	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

MLX91219 High Speed High Accuracy Current Sensor IC with OCD

Datasheet

18. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information. Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical lifesupport or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

- 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
- 2. civil firearms, including spare parts or ammunition for such arms;
- 3. defense related products, or other material for military use or for law enforcement;
- 4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions.

The previous versions of this document are repealed.

Melexis \odot - No part of this document may be reproduced without the prior written consent of Melexis. (2022)

IATF 16949 and ISO 14001 Certified

For the latest version of this document or find your local contact, visit us at http://www.melexis.com/MLX91219