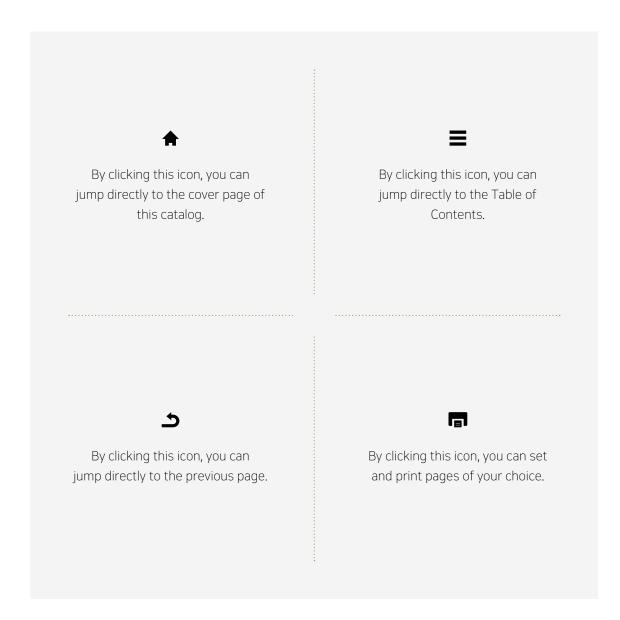
MULTILAYER CERAMIC CAPACITORS for AUTOMOTIVE

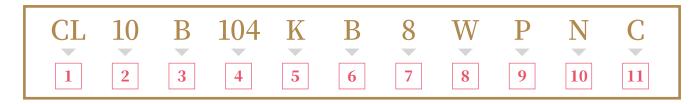

SAMSUNG ELECTRO-MECHANICS

MULTILAYER CERAMIC CAPACITORS for AUTOMOTIVE

Interactive User Guide

Samsung Electro-Mechanics' MLCC for AUTOMOTIVE Catalog was produced as an INTERACTIVE PDF that allows transferring to related webpages for better understanding of the content. Click 'HOME,' 'CONTENTS,' OR 'GO BACK TO PAGE' as needed, and it is also possible to 'PRINT' the pages. If you click the icon at the top of the page, it is possible to view a specific page of choice.

C O N T E N T S


- 04 Part Numbering
- 06 General Capacitors
- 18 High Bending Strength
- 22 ESD Protection
- 23 Fail Safe

- 24 Application Guide
- 44 Reliability Test Conditions
- 48 Packaging Specifications
- 53 Caution/Notice
- 73 Components Sales Offices/Manufacturing Sites

Part Numbering
 General Capacitors
 High Bending Streng
 FSD Protection

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

Part Numbering

1 SERIES CODE

CL = Multilayer Ceramic Capacitors

² SIZE CODE

Code	mm (inch)	Code	mm (inch)
03	0603 (0201)	21	2012 (0805)
05	1005 (0402)	31	3216 (1206)
10	1608 (0603)	32	3225 (1210)

3 DIELECTRIC CODE

Class I (Temperature Compensation)

Symbol	EIA Code	Operation Temperature Range (°C)	Temperature Coefficient Range (ppm/°C)
С	COG	-55 ~ +125	0 ±30
G	X8G	150	0 ±30

Class II (High Dielectric Constant)

Symbol	EIA Code	Operation Temperature Range (°C)	Capacitance Change ($ riangle$ °%)
В	X7R	-55 ~ +125	±15
E	X8L	-55 ~ +150	-40 ~ +15
Y	X7S	-55 ~ +125	±22
Z	X7T	-55 ~ +125	-33 ~ +22

4 CAPACITANCE CODE

Capacitance expressed in pF. 2 significant digits plus number of zeros. example) $106=10\times10^{6}=10,000,000$ pF For Values $\langle 10pF$, Letter R denotes decimal point example) 1R5=1.5 pF

5 CAPACITANCE TOLERANCE CODE

Code	Tolerance	TC	Capacitance series	Remark
С	±0.25pF	COG	E-12 series*	<5pF
D	±0.5pF	COG	E-12 series*	5pF <cp<10pf< td=""></cp<10pf<>
J	±5%	COG	E-12 series*	≥10pF
K	±10%	X7R/X7S	E-6 series*	
М	±20%	X7R/X7S	E-6 series*	

* E-24 series is also available

* E-24 series is necessary to be checked with Sales or AE department.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd

Part Numbering

Code	Capacitance Step											
E-3	1.0				2.2				4.7			
E-6	1	.0	1	.5	2.2		3.3		4.7		6.8	
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E=24	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

6 RATED VOLTAGE CODE

R = 4V Q = 6.3V P = 10V O = 16V A = 25V B = 50V C = 100V

7 THICKNESS CODE

Size mm (inch)	Code	Thickness*	Tolerance		
0603 (0201)	3	0.30	±0.03		
0005 (0201)	S	0.30	±0.05		
1005 (0402)	5	0.50	±0.05		
1005 (0402)	6	0.50	±0.20		
1608 (0603)	8	0.80	±0.10		
1008 (0003)	9	0.90	±0.10		
	F	1.25	±0.10		
2012 (0805)	Q	1.25	±0.15		
	Y	1.25	±0.20		

Size mm (inch)	Code	Thickness*	Tolerance
3216 (1206)	Н	1.60	±0.20
5210(1200)	К	1.60	±0.30
3225 (1210)	J	2.50	±0.20
3223 (1210)	V	2.50	±0.30

* In case of High Bending Strength, ESD protection capacitors, Please refer to individual specifications.

** This code has only typical specifications. Please refer to individual specifications.

8 DESIGN CODE

Code	Inner electrode	Termination	Plating material	Design
1	Ni	Cu	Ni_Sn 100%	Standard
4	Ni	Metal(Ag) Epoxy	Ni_Sn 100%	Standard
5	Ni	Metal(Ag) Epoxy	Ni_Sn 100%	Open Mode
V	Ni	Metal(Cu) Epoxy	Ni_Sn 100%	Standard
W	Ni	Metal(Cu) Epoxy	Ni_Sn 100%	Open Mode
Х	Ni	Metal(Cu) Epoxy	Ni_Sn 100%	Float Mode

PRODUCT CODE OR SIZE CONTROL CODE

P = Automotive product meet AEC - Q200

10 CONTROL CODE

N = Standard

J = High Bending Strength

E = ESD Protection

11 PACKAGING CODE

Code	Туре
С	Cardboard Tape, 7"reel
D/L	Cardboard Tape, 13"reel (Quantity option)*

Code	Туре
E	Embossed Tape, 7"reel
F	Embossed Tape, 13"reel

* Refer to the packaging specsheet

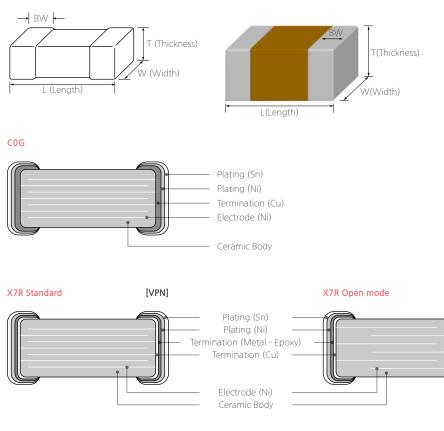
General Capacitors General

Features

- Manufactured by state-of-the-art facilities, recommended for registration of ISO 9001 & IATF 16949
- Meet AEC-Q200 requirements.
- Comply with the RoHS.

=

- Meet JEDEC-020-D requirements.
- X7R dielectric components have BME and metal-epoxy terminations with a Ni_Sn plated overcoat.
- COG dielectric components contain BME and copper terminations with a Ni_Sn plated overcoat.



 Ceramic Body
 Electrode (Ni)
 Termination (Cu or Cu+Metal Epoxy)
 Plating (Ni)
 Plating (Sn)

Applications

Automotive Electronic Equipment (Powertrain, Safety, Body & Chassis, ADAS, Infotainment)

Structure and Dimensions

[WPN]

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size Code	Thickness		Dimensi	ion (mm)		ELA (inch
Size Code	Code	L	W	Т	BW	– EIA (inch
03	S	0.60±0.05	0.30±0.05	0.30±0.05	0.15±0.05	0201
05 -	5	1.00±0.05	0.50±0.05	0.50±0.05	0.25±0.10	0.(02
05	6	1.00±0.20	0.50±0.20	0.50±0.20	0.25±0.10	- 0402
10	8	1.60±0.10	0.80±0.10	0.80±0.10	0.30±0.20	0000
10	9	1.60±0.20	0.80±0.20	0.80±0.20	0.30±0.20	0603
	6	2.00±0.10	1.25±0.10	0.60±0.10	0.50+0.2/-0.3	
	С	2.00±0.10	1.25±0.10	0.85±0.10	0.50+0.2/-0.3	_
21	F	2.00±0.10	1.25±0.10	1.25±0.10	0.50+0.2/-0.3	0005
21	Q	2.00±0.15	1.25±0.15	1.25±0.15	0.50+0.2/-0.3	- 0805
	Y	2.00±0.20	1.25±0.20	1.25±0.20	0.50+0.2/-0.3	
	В	2.00±0.25	1.25±0.25	1.25±0.25	0.50+0.2/-0.3	
	С	3.20±0.15	1.60±0.15	0.85±0.15	0.50±0.30	
24	P	3.20±0.15	1.60±0.15	1.15±0.10	0.50±0.30	1000
31	Н	3.20±0.20	1.60±0.20	1.60±0.20	0.50±0.30	1206
	К	3.20±0.30	1.60±0.30	1.60±0.30	0.50±0.30	
	I	3.20±0.30	2.50±0.20	2.00±0.20	0.60±0.30	
32	J	3.20±0.30	2.50±0.20	2.50±0.20	0.60±0.30	1210
	V	3.20±0.40	2.50±0.30	2.50±0.30	0.60±0.30	

Capacitance Table (COG/X8G)

		Size mm	Rated	Capacitance									Capacitanca	
Category TC		(inch)	Voltage			pF			r	۱F		uF		Capacitance Range
		((Vdc)	0.1	1	10	100	1	10	100	1	10	100	
		1005 (0402)	50											1pF - 220pF
		1005 (0402)	100											2.2pF - 100pF
	COG	1608 (0603)	50											1pF - 1nF
	(125℃)	1008 (0003)	100											5.6pF - 220pF
		2012 (0805)	50											1nF - 10nF
AEC-Q200 Normal			100											1nF - 1nF
Norman		1005 (0402)	50											220pF - 220pF
		1609 (0603)	50											680pF - 680pF
	X8G (150℃)	1608 (0603)	100											680pF - 680pF
	(1500)	2012 (0805)	50											6.8nF - 6.8nF
			100											1.5nF - 1.5nF

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Capacitance Table (X7R/X7S/X7T/X8G/X8L)

		Cine mar	Rated						Capa	citance					Conscitones
Category	ТС	Size mm (inch)	Voltage			р	F				٦F			uF	Capacitance Range
			(Vdc)	0.1	 1		10	100	1	10	100	1	1	0 100	
		0402 (0201)	10		_										1nF - 10nF
			25												10nF
			10												33nF - 220nF
			16												1nF - 100nF
		1005 (0402)	25												1nF - 220nF
			50												330pF - 100nF
			100												1nF - 2.2nF
			6.3												1uF - 1uF
			10												220nF - 1uF
		1608 (0603)	16												68nF - 1uF
		,	25												1nF - 1uF
			50												220pF - 220nF
			100												220pF - 100nF
			6.3												4.7uF - 4.7uF
	X7R		10												1uF - 4.7uF
	(125℃)		26												150nF - 4.7uF
		2012 (0805)	25												150nF - 2.2uF
			35												1uF - 1uF
			50												100nF - 1uF
AEC-Q200			100												22nF - 220nF
Normal			10												4.7uF - 22uF
(Epoxy)			16												2.2uF - 10uF
		3216 (1206)	25												2.2uF - 10uF
			50												330nF - 4.7uF
			100												470nF - 1uF
			10												22uF - 22uF
			16												22uF - 22uF
		3225 (1210)	25												4.7uF - 10uF
			50												1uF - 6.8uF
			100												2.2uF - 2.2uF
		0402 (0201)	6.3												100nF
			6.3												220nF - 1uF
		1005 (0402)	10												220nF - 1uF
			16												220nF - 220nF
		1608 (0603)	10												2.2uF - 2.2uF
	X7S (125℃)		6.3												10uF - 10uF
	(1200)		10												10uF - 10uF
		2012 (0005)	16												10uF - 10uF
		2012 (0805)	25												4.7uF - 10uF
			50												2.2uF - 4.7uF
			100												1uF - 1uF

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

		Size mm	Rated					Сара	acitance	1				Canacitanaa
Category	тс	(inch)	Voltage			pF			nF			uF		Capacitance Range
			(Vdc)	0.1	1	10	100	1	10	100	1	10	100	5
		3216 (1206)	50											10uF
		5210 (1200)	100											2.2uF - 2.2uF
	X7S		6.3											47uF - 47uF
	(125℃)	3225 (1210)	10											47uF - 47uF
AEC-Q200 Normal		5225 (1210)	25											22uF - 22uF
(Epoxy)			50											6.8uF - 10uF
	X7T (125℃)	1608 (0603)	6.3											4.7uF - 4.7uF
		1608 (0603)	25											220nF - 220nF
	X8L (150℃)	2012 (0805)	25											470nF - 470nF
	(1000)	3216 (1206)	25											2.2uF - 2.2uF

Product Line up (COG/X8G)

Size : 1.00 \times 0.50mm (inch : 0402)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	0.55	50	COG	1pF	±0.25pF	CL05C010CB51PN#
2	0.55	50	COG	1.2pF	±0.25pF	CL05C1R2CB51PN#
3	0.55	50	COG	1.5pF	±0.25pF	CL05C1R5CB51PN#
4	0.55	50	COG	2.2pF	±0.25pF	CL05C2R2CB51PN#
5	0.55	50	COG	3pF	±0.25pF	CL05C030CB51PN#
6	0.55	50	COG	3.9pF	±0.25pF	CL05C3R9CB51PN#
7	0.55	50	COG	4pF	±0.25pF	CL05C040CB51PN#
8	0.55	50	COG	4.7pF	±0.25pF	CL05C4R7CB51PN#
9	0.55	50	COG	5pF	±0.25pF	CL05C050CB51PN#
10	0.55	50	COG	5.6pF	±0.25pF	CL05C5R6CB51PN#
11	0.55	50	COG	6pF	±0.5pF	CL05C060DB51PN#
12	0.55	50	COG	6.8pF	±0.5pF	CL05C6R8DB51PN#
13	0.55	50	COG	6.8pF	±0.25pF	CL05C6R8CB51PN#
14	0.55	50	COG	8pF	±0.5pF	CL05C080DB51PN#
15	0.55	50	COG	8.2pF	±0.1pF	CL05C8R2BB51PN#
16	0.55	50	COG	8.2pF	±0.25pF	CL05C8R2CB51PN#
17	0.55	50	COG	9pF	±0.5pF	CL05C090DB51PN#
18	0.55	50	COG	10pF	±5%	CL05C100JB51PN#
19	0.55	50	COG	12pF	±5%	CL05C120JB51PN#
20	0.55	50	COG	15pF	±5%	CL05C150JB51PN#
21	0.55	50	COG	18pF	±5%	CL05C180JB51PN#
22	0.55	50	COG	20pF	±2%	CL05C200GB51PN#
23	0.55	50	COG	20pF	±5%	CL05C200JB51PN#
24	0.55	50	COG	22pF	±5%	CL05C220JB51PN#

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 1.00 × 0.50mm (inch : 0402)

≡

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
25	0.55	50	COG	27pF	±5%	CL05C270JB51PN#
26	0.55	50	COG	33pF	±5%	CL05C330JB51PN#
27	0.55	50	COG	39pF	±5%	CL05C390JB51PN#
28	0.55	50	COG	47pF	±5%	CL05C470JB51PN#
29	0.55	50	COG	56pF	±5%	CL05C560JB51PN#
30	0.55	50	COG	68pF	±5%	CL05C680JB51PN#
31	0.55	50	COG	82pF	±5%	CL05C820JB51PN#
32	0.55	50	COG	100pF	±5%	CL05C101JB51PN#
33	0.55	50	COG	120pF	±5%	CL05C121JB51PN#
34	0.55	50	COG	150pF	±5%	CL05C151JB51PN#
35	0.55	50	COG	220pF	±5%	CL05C221JB51PN#
36	0.55	100	COG	2.2pF	±0.25pF	CL05C2R2CC51PN#
37	0.55	100	COG	4.7pF	±0.25pF	CL05C4R7CC51PN#
38	0.55	100	COG	10pF	±5%	CL05C100JC51PN#
39	0.55	100	COG	12pF	±5%	CL05C120JC51PN#
40	0.55	100	COG	15pF	±5%	CL05C150JC51PN#
41	0.55	100	COG	18pF	±5%	CL05C180JC51PN#
42	0.55	100	COG	22pF	±5%	CL05C220JC51PN#
43	0.55	100	COG	27pF	±5%	CL05C270JC51PN#
44	0.55	100	COG	33pF	±5%	CL05C330JC51PN#
45	0.55	100	COG	39pF	±5%	CL05C390JC51PN#
46	0.55	100	COG	47pF	±5%	CL05C470JC51PN#
47	0.55	100	COG	56pF	±5%	CL05C560JC51PN#
48	0.55	100	COG	68pF	±5%	CL05C680JC51PN#
49	0.55	100	COG	82pF	±5%	CL05C820JC51PN#
50	0.55	100	COG	100pF	±5%	CL05C101JC51PN#
51	0.55	50	X8G	220pF	±5%	CL05G221JB51PN#

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 1.60 × 0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	0.90	50	COG	1pF	±0.25pF	CL10C010CB81PN#
2	0.90	50	COG	1.2pF	±0.25pF	CL10C1R2CB81PN#
3	0.90	50	COG	1.5pF	±0.25pF	CL10C1R5CB81PN#
4	0.90	50	COG	1.8pF	±0.25pF	CL10C1R8CB81PN#
5	0.90	50	COG	2pF	±0.25pF	CL10C020CB81PN#
6	0.90	50	COG	2.2pF	±0.25pF	CL10C2R2CB81PN#
7	0.90	50	COG	2.7pF	±0.25pF	CL10C2R7CB81PN#
8	0.90	50	COG	ЗрF	±0.25pF	CL10C030CB81PN#
9	0.90	50	COG	3.3pF	±0.25pF	CL10C3R3CB81PN#
10	0.90	50	COG	4.7pF	±0.25pF	CL10C4R7CB81PN#
11	0.90	50	COG	5pF	±0.25pF	CL10C050CB81PN#
12	0.90	50	COG	5.6pF	±0.5pF	CL10C5R6DB81PN#
13	0.90	50	COG	6pF	±0.5pF	CL10C060DB81PN#
14	0.90	50	COG	7pF	±0.5pF	CL10C070DB81PN#
15	0.90	50	COG	8pF	±0.5pF	CL10C080DB81PN#
16	0.90	50	COG	8.2pF	±0.25pF	CL10C8R2CB81PN#
17	0.90	50	COG	9pF	±0.5pF	CL10C090DB81PN#
18	0.90	50	COG	10pF	±0.25pF	CL10C100CB81PN#
19	0.90	50	COG	10pF	±0.5pF	CL10C100DB81PN#
20	0.90	50	COG	10pF	±5%	CL10C100JB81PN#
21	0.90	50	COG	12pF	±5%	CL10C120JB81PN#
22	0.90	50	COG	15pF	±5%	CL10C150JB81PN#
23	0.90	50	COG	18pF	±5%	CL10C180JB81PN#
24	0.90	50	COG	20pF	±5%	CL10C200JB81PN#
25	0.90	50	COG	22pF	±5%	CL10C220JB81PN#
26	0.90	50	COG	27pF	±5%	CL10C270JB81PN#
27	0.90	50	COG	33pF	±5%	CL10C330JB81PN#
28	0.90	50	COG	39pF	±1%	CL10C390FB81PN#
29	0.90	50	COG	39pF	±5%	CL10C390JB81PN#
30	0.90	50	COG	47pF	±1%	CL10C470FB81PN#
31	0.90	50	COG	47pF	±5%	CL10C470JB81PN#
32	0.90	50	COG	56pF	±5%	CL10C560JB81PN#
33	0.90	50	COG	68pF	±5%	CL10C680JB81PN#
34	0.90	50	COG	82pF	±5%	CL10C820JB81PN#
35	0.90	50	COG	100pF	±1%	CL10C101FB81PN#
36	0.90	50	COG	100pF	±5%	CL10C101JB81PN#
37	0.90	50	COG	120pF	±5%	CL10C121JB81PN#
38	0.90	50	COG	150pF	±5%	CL10C151JB81PN#
39	0.90	50	COG	180pF	±5%	CL10C181JB81PN#
40	0.90	50	COG	220pF	±5%	CL10C221JB81PN#
41	0.90	50	COG	270pF	±5%	CL10C271JB81PN#
42	0.90	50	COG	330pF	±5%	CL10C331JB81PN#

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 1.60 × 0.80mm (inch : 0603)

≡

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
43	0.90	50	COG	390pF	±5%	CL10C391JB81PN#
44	0.90	50	COG	470pF	±5%	CL10C471JB81PN#
45	0.90	50	COG	560pF	±5%	CL10C561JB81PN#
46	0.90	50	COG	680pF	±5%	CL10C681JB81PN#
47	0.90	50	COG	820pF	±5%	CL10C821JB81PN#
48	0.90	50	COG	1nF	±5%	CL10C102JB81PN#
49	0.90	100	COG	5.6pF	±0.25pF	CL10C5R6CC81PN#
50	0.90	100	COG	10pF	±5%	CL10C100JC81PN#
51	0.90	100	COG	12pF	±5%	CL10C120JC81PN#
52	0.90	100	COG	15pF	±5%	CL10C150JC81PN#
53	0.90	100	COG	18pF	±5%	CL10C180JC81PN#
54	0.90	100	COG	22pF	±5%	CL10C220JC81PN#
55	0.90	100	COG	27pF	±5%	CL10C270JC81PN#
56	0.90	100	COG	33pF	±5%	CL10C330JC81PN#
57	0.90	100	COG	39pF	±5%	CL10C390JC81PN#
58	0.90	100	COG	47pF	±5%	CL10C470JC81PN#
59	0.90	100	COG	50pF	±5%	CL10C500JC81PN#
60	0.90	100	COG	56pF	±5%	CL10C560JC81PN#
61	0.90	100	COG	82pF	±5%	CL10C820JC81PN#
62	0.90	100	COG	100pF	±5%	CL10C101JC81PN#
63	0.90	100	COG	120pF	±5%	CL10C121JC81PN#
64	0.90	100	COG	150pF	±5%	CL10C151JC81PN#
65	0.90	100	COG	180pF	±5%	CL10C181JC81PN#
66	0.90	100	COG	220pF	±5%	CL10C221JC81PN#
67	0.90	50	X8G	680pF	±5%	CL10G681JB81PN#
68	0.90	100	X8G	680pF	±5%	CL10G681JC81PN#

Size : 2.00 × 1.25mm (inch : 0805)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.35	50	COG	1.8nF	±5%	CL21C182JBF1PN#
2	1.35	50	COG	4.7nF	±5%	CL21C472JBF1PN#
3	1.35	50	COG	6.8nF	±5%	CL21C682JBF1PN#
4	1.35	50	COG	8.2nF	±5%	CL21C822JBF1PN#
5	1.35	50	COG	10nF	±5%	CL21C103JBF1PN#
6	1.35	50	X8G	6.8nF	±5%	CL21G682JBF1PN#
7	0.95	100	X8G	1.5nF	±5%	CL21G152JCC1PN#

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Product Line up (X7R/X7S/X7T)

Size : 1.00 × 0.50mm (inch : 0402)

Ξ

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	0.55	6.3	X7S	470nF	±10%	CL05Y474KQ5VPN#
2	0.70	6.3	X7S	1uF	±10%	CL05Y105KQ6VPN#
3	0.55	10	X7R	100nF	±10%	CL05B104KP5VPN#
4	0.60	10	X7S	470nF	±10%	CL05Y474KP5VPN#
5	0.67	10	X7S	1uF	±10%	CL05Y105KPAVPN#
6	0.70	10	X7S	1uF	±10%	CL05Y105KP6VPN#
7	0.55	16	X7R	3.3nF	±10%	CL05B332K05VPN#
8	0.55	16	X7R	4.7nF	±10%	CL05B472K05VPN#
9	0.55	16	X7R	6.8nF	±10%	CL05B682K05VPN#
10	0.55	16	X7R	10nF	±10%	CL05B103K05VPN#
11	0.55	16	X7R	15nF	±10%	CL05B153K05VPN#
12	0.55	16	X7R	22nF	±10%	CL05B223K05VPN#
13	0.55	16	X7R	33nF	±10%	CL05B333K05VPN#
14	0.55	16	X7R	47nF	±10%	CL05B473K05VPN#
15	0.55	16	X7R	68nF	±10%	CL05B683K05VPN#
16	0.55	16	X7R	100nF	±10%	CL05B104K05VPN#
17	0.55	25	X7R	1nF	±10%	CL05B102KA5VPN#
18	0.55	25	X7R	1.5nF	±10%	CL05B152KA5VPN#
19	0.55	25	X7R	2.2nF	±10%	CL05B222KA5VPN#
20	0.55	25	X7R	3.3nF	±10%	CL05B332KA5VPN#
21	0.55	25	X7R	4.7nF	±10%	CL05B472KA5VPN#
22	0.55	25	X7R	6.8nF	±10%	CL05B682KA5VPN#
23	0.55	25	X7R	10nF	±10%	CL05B103KA5VPN#
24	0.55	25	X7R	15nF	±10%	CL05B153KA5VPN#
25	0.55	25	X7R	22nF	±10%	CL05B223KA5VPN#
26	0.55	25	X7R	33nF	±10%	CL05B333KA5VPN#
27	0.55	25	X7R	47nF	±10%	CL05B473KA5VPN#
28	0.55	50	X7R	470pF	±10%	CL05B471KB5VPN#
29	0.55	50	X7R	680pF	±10%	CL05B681KB5VPN#
30	0.55	50	X7R	1nF	±10%	CL05B102KB5VPN#
31	0.55	50	X7R	1.5nF	±10%	CL05B152KB5VPN#
32	0.55	50	X7R	2.2nF	±10%	CL05B222KB5VPN#
33	0.55	50	X7R	3.3nF	±5%	CL05B332JB5VPN#
34	0.55	50	X7R	3.3nF	±10%	CL05B332KB5VPN#
35	0.55	50	X7R	4.7nF	±10%	CL05B472KB5VPN#
36	0.55	50	X7R	6.8nF	±10%	CL05B682KB5VPN#
37	0.55	50	X7R	8.2nF	±10%	CL05B822KB5VPN#
38	0.55	50	X7R	10nF	±10%	CL05B103KB5VPN#
39	0.55	50	X7R	15nF	±10%	CL05B153KB5VPN#
40	0.55	50	X7R	22nF	±10%	CL05B223KB5VPN#
41	0.55	50	X7R	33nF	±10%	CL05B333KB5VPN#

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 1.00 × 0.50mm (inch : 0402)

Ξ

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
42	0.55	50	X7R	47nF	±10%	CL05B473KB5VPN#
43	0.55	50	X7R	100nF	±10%	CL05B104KB54PN#
44	0.55	100	X7R	1nF	±10%	CL05B102KC5VPN#
45	0.55	100	X7R	2.2nF	±10%	CL05B222KC5VPN#
46	0.55	25	X7R	220nF	±10%	CL05B224KA5VPN#
47	1.00	50	X7R	1uF	±10%	CL10B105KB9VPN#

Product Line up (X7R/X7S/X7T/X8L)

Size : 1.60 × 0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.00	6.3	X7T	4.7uF	±20%	CL10Z475MQ9VPN#
2	0.90	10	X7R	1uF	±10%	CL10B105KP8VPN#
3	0.90	10	X7S	2.2uF	±10%	CL10Y225KP84PN#
4	0.90	16	X7R	68nF	±10%	CL10B683K08WPN#
5	0.90	16	X7R	100nF	±10%	CL10B104K08WPN#
6	0.90	16	X7R	150nF	±10%	CL10B154K08VPN#
7	0.90	16	X7R	220nF	±10%	CL10B224K08VPN#
8	0.90	16	X7R	270nF	±10%	CL10B274K08VPN#
9	0.90	16	X7R	330nF	±10%	CL10B334K08VPN#
10	0.90	16	X7R	470nF	±10%	CL10B474K08VPN#
11	0.90	16	X7R	680nF	±10%	CL10B684K08VPN#
12	0.90	16	X7R	1uF	±10%	CL10B105K08VPN#
13	0.90	25	X7R	10nF	±10%	CL10B103KA8WPN#
14	0.90	25	X7R	15nF	±10%	CL10B153KA8WPN#
15	0.90	25	X7R	22nF	±10%	CL10B223KA8WPN#
16	0.90	25	X7R	33nF	±10%	CL10B333KA85PN#
17	0.90	25	X7R	47nF	±10%	CL10B473KA85PN#
18	0.90	25	X7R	100nF	±10%	CL10B104KA8WPN#
19	0.90	25	X7R	150nF	±10%	CL10B154KA8VPN#
20	0.90	25	X7R	220nF	±10%	CL10B224KA8VPN#
21	0.90	25	X7R	330nF	±10%	CL10B334KA8VPN#
22	0.90	25	X7R	470nF	±10%	CL10B474KA8VPN#
23	0.90	25	X7R	680nF	±10%	CL10B684KA8VPN#
24	0.90	25	X7R	1uF	±10%	CL10B105KA8VPN#
25	0.90	50	X7R	220pF	±10%	CL10B221KB8WPN#
26	0.90	50	X7R	470pF	±10%	CL10B471KB8WPN#
27	0.90	50	X7R	1nF	±10%	CL10B102KB8WPN#
28	0.90	50	X7R	1.5nF	±10%	CL10B152KB8WPN#
29	0.90	50	X7R	1.8nF	±10%	CL10B182KB8WPN#

Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 1.60 × 0.80mm (inch : 0603)

Ξ

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
30	0.90	50	X7R	2.2nF	±10%	CL10B222KB8WPN#
31	0.90	50	X7R	3.3nF	±10%	CL10B332KB8WPN#
32	0.90	50	X7R	4.7nF	±10%	CL10B472KB8WPN#
33	0.90	50	X7R	6.8nF	±10%	CL10B682KB8WPN#
34	0.90	50	X7R	8.2nF	±10%	CL10B822KB8WPN#
35	0.90	50	X7R	10nF	±10%	CL10B103KB8WPN#
36	0.90	50	X7R	15nF	±10%	CL10B153KB8WPN#
37	0.90	50	X7R	22nF	±10%	CL10B223KB8WPN#
38	0.90	50	X7R	33nF	±10%	CL10B333KB8WPN#
39	0.90	50	X7R	47nF	±10%	CL10B473KB8WPN#
40	0.90	50	X7R	68nF	±10%	CL10B683KB8WPN#
41	0.90	50	X7R	100nF	±10%	CL10B104KB8WPN#
42	0.90	50	X7R	150nF	±10%	CL10B154KB8VPN#
43	0.90	50	X7R	220nF	±10%	CL10B224KB8VPN#
44	0.90	100	X7R	330pF	±10%	CL10B331KC8WPN#
45	0.90	100	X7R	470pF	±10%	CL10B471KC8WPN#
46	0.90	100	X7R	680pF	±10%	CL10B681KC8WPN#
47	0.90	100	X7R	1nF	±10%	CL10B102KC8WPN#
48	0.90	100	X7R	1.5nF	±10%	CL10B152KC8WPN#
49	0.90	100	X7R	2.2nF	±10%	CL10B222KC8WPN#
50	0.90	100	X7R	3.3nF	±10%	CL10B332KC8WPN#
51	0.90	100	X7R	4.7nF	±10%	CL10B472KC8WPN#
52	0.90	100	X7R	6.8nF	±10%	CL10B682KC8WPN#
53	0.90	100	X7R	10nF	±10%	CL10B103KC8WPN#
54	0.90	100	X7R	15nF	±10%	CL10B153KC8WPN#
55	0.90	100	X7R	22nF	±10%	CL10B223KC8WPN#
56	0.90	100	X7R	33nF	±10%	CL10B333KC8WPN#
57	0.90	100	X7R	47nF	±10%	CL10B473KC8WPN#
58	0.90	100	X7R	68nF	±10%	CL10B683KC8WPN#
59	0.90	100	X7R	100nF	±10%	CL10B104KC8VPN#
60	0.90	50	X7R	470nF	±10%	CL10B474KB8VPN#
61	0.90	50	X7R	330nF	±10%	CL10B334KB8VPN#
62	1.00	6.3	X7R	10uF	±20%	CL10Z106MQ9VPN#

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

General Capacitors

Size : 2.00 × 1.25mm (inch : 0805)

≡

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.40	6.3	X7R	4.7uF	±10%	CL21B475KQQVPN#
2	1.40	6.3	X7S	10uF	±10%	CL21Y106KQQVPN#
3	1.35	10	X7R	2.2uF	±10%	CL21B225KPFVPN#
4	1.40	10	X7R	4.7uF	±10%	CL21B475KPQVPN#
5	1.40	10	X7S	10uF	±10%	CL21Y106KPQVPN#
6	1.35	16	X7R	470nF	±10%	CL21B474KOFVPN#
7	1.35	16	X7R	680nF	±10%	CL21B684KOFVPN#
8	1.35	16	X7R	1uF	±10%	CL21B105K0FVPN#
9	1.35	16	X7R	2.2uF	±10%	CL21B225KOFVPN#
10	1.40	16	X7R	2.2uF	±10%	CL21B225KOQVPN#
11	1.40	16	X7R	3.3uF	±10%	CL21B335KOQVPN#
12	1.40	16	X7R	4.7uF	±10%	CL21B475KOQVPN#
13	1.40	16	X7S	10uF	±10%	CL21Y106K0Q4PN#
14	1.35	25	X7R	220nF	±10%	CL21B224KAFVPN#
15	1.35	25	X7R	1uF	±10%	CL21B105KAFVPN#
16	1.35	25	X7R	2.2uF	±10%	CL21B225KAFVPN#
17	1.35	35	X7R	1uF	±10%	CL21B105KLFVPN#
18	1.35	50	X7R	100nF	±10%	CL21B104KBFWPN#
19	1.35	50	X7R	120nF	±10%	CL21B124KBFVPN#
20	1.35	50	X7R	150nF	±10%	CL21B154KBFVPN#
21	1.35	50	X7R	180nF	±10%	CL21B184KBFVPN#
22	1.35	50	X7R	220nF	±10%	CL21B224KBFVPN#
23	1.35	50	X7R	330nF	±10%	CL21B334KBFVPN#
24	1.35	50	X7R	470nF	±10%	CL21B474KBFVPN#
25	1.35	50	X7R	680nF	±10%	CL21B684KBFVPN#
26	1.35	50	X7R	1uF	±10%	CL21B105KBFVPN#
27	1.35	100	X7R	22nF	±10%	CL21B223KCFWPN#
28	1.35	100	X7R	47nF	±10%	CL21B473KCFWPN#
29	1.35	100	X7R	100nF	±10%	CL21B104KCFWPN#
30	1.40	100	X7R	220nF	±10%	CL21B224KCQVPN#
31	1.45	100	X7S	1uF	±10%	CL21Y105KCYVPN#
32	1.50	50	X7S	4.7uF	±10%	CL21Y475KBBVPN#
33	1.45	50	X7R	2.2uF	±10%	CL21B225KBYVPN#
34	1.50	25	X7S	10uF	±10%	CL21Y106KABVPN#
35	1.50	25	X7S	4.7uF	±10%	CL21Y475KABVPN#
36	1.45	6.3	X7T	22uF	±20%	CL21Z226MQYVPN#

Caution/Notice Component sales offices/ Manufacturing sitesd

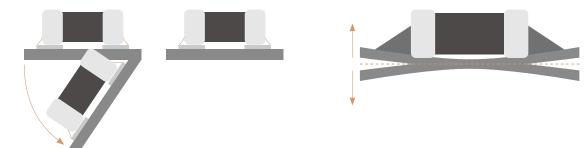
General Capacitors

Size : 3.20 × 1.60mm (inch : 1206)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.80	10	X7R	10uF	±10%	CL31B106KPHVPN#
2	1.80	16	X7R	2.2uF	±10%	CL31B225KOHVPN#
3	1.80	16	X7R	4.7uF	±10%	CL31B475KOHVPN#
4	1.80	16	X7R	6.8uF	±10%	CL31B685KOHVPN#
5	1.80	16	X7R	10uF	±10%	CL31B106K0HVPN#
6	1.80	25	X7R	2.2uF	±10%	CL31B225KAHVPN#
7	1.80	25	X7R	3.3uF	±10%	CL31B335KAHVPN#
8	1.80	25	X7R	4.7uF	±10%	CL31B475KAHVPN#
9	1.80	25	X7R	10uF	±10%	CL31B106KAHVPN#
10	1.80	50	X7R	330nF	±10%	CL31B334KBHWPN#
11	1.80	50	X7R	470nF	±10%	CL31B474KBHWPN#
12	1.80	50	X7R	680nF	±10%	CL31B684KBHWPN#
13	1.80	50	X7R	1uF	±10%	CL31B105KBHWPN#
14	1.80	50	X7R	1.5uF	±10%	CL31B155KBHVPN#
15	1.80	50	X7R	2.2uF	±10%	CL31B225KBHVPN#
16	1.80	50	X7R	4.7uF	±10%	CL31B475KBHVPN#
17	1.80	100	X7R	470nF	±10%	CL31B474KCHWPN#
18	1.80	100	X7R	1uF	±10%	CL31B105KCHVPN#
19	1.80	100	X7S	2.2uF	±10%	CL31Y225KCHVPN#
20	1.90	50	X7S	10uF	±10%	CL31Y106KBKVPN#
21	1.90	10	X7R	22uF	±10%	CL31B226KPKVPN#
22	1.90	6.3	X7R	22uF	±10%	CL31B226KQKVPN#
23	1.90	4	X7T	47uF	±20%	CL31Z476MRKVPN#

Size : 3.20 × 2.50mm (inch : 1210)

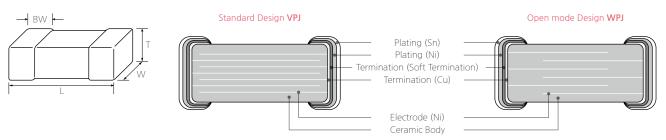
No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	2.80	6.3	X7S	47uF	±20%	CL32Y476MQVVPN#
2	2.70	10	X7R	22uF	±10%	CL32B226KPJVPN#
3	2.80	10	X7S	47uF	±20%	CL32Y476MPVVPN#
4	2.70	16	X7R	22uF	±10%	CL32B226K0JVPN#
5	2.70	16	X7R	22uF	±20%	CL32B226M0JVPN#
6	2.70	25	X7R	10uF	±10%	CL32B106KAJ4PN#
7	2.80	25	X7S	22uF	±10%	CL32Y226KAVVPN#
8	2.70	50	X7R	3.3uF	±10%	CL32B335KBJVPN#
9	2.70	50	X7R	4.7uF	±10%	CL32B475KBJVPN#
10	2.70	50	X7S	6.8uF	±10%	CL32Y685KBJVPN#
11	2.70	50	X7S	10uF	±10%	CL32Y106KBJ4PN#
12	2.70	100	X7R	2.2uF	±10%	CL32B225KCJVPN#
13	2.20	100	X7S	4.7uF	±10%	CL32Y475KCIVPN#
14	2.70	100	X7R	2.2uF	±10%	CL32B225KCJVPN#
15	2.80	25	X7S	22uF	±10%	CL32Y226KAVVPN#
16	2.80	10	X7S	47uF	±20%	CL32Y476MPVVPN#
17	2.80	6.3	X7R	47uF	±10%	CL32B476KQVVPN#


Caution/Notice Component sales offices/ Manufacturing sitesd

High Bending Strength High Bending

Features

_


- AEC-Q200 qualified, 5mm bending strength guaranteed.
- Soft termination has been tested according to the VW 80808-2.

Applications

Critical circuits and battery line circuits.
 (Prevent a module/sub-system failure in the event of a cracked/shorted capacitor)

Structure and Dimensions

Cita Cada	Thickness		Dimensi	ion (mm)		ELA (inch
Size Code	Code	L	W	Т	BW	– EIA (inch
05	5	1.00±0.10	0.50±0.05	0.50±0.05	0.25±0.10	- 0402
05	6	1.00±0.20	0.50±0.20	0.50±0.20	0.25±0.10	0402
10	8	1.60±0.20	0.80±0.10	0.80±0.10	0.30±0.20	0600
10	9	1.60±0.30	0.80±0.20	0.80±0.20	0.30±0.20	- 0603
	С	2.00±0.30	1.25±0.20	0.85±0.10	0.50+0.2/-0.3	
	F	2.00±0.30	1.25±0.20	1.25±0.20	0.50+0.2/-0.3	
21	Q	2.00±0.35	1.25±0.25	1.25±0.25	0.50+0.2/-0.3	0805
	Y	2.00±0.20	1.25±0.20	1.25+0.20/-0.15	0.50+0.2/-0.3	
	В	2.00±0.25	1.25±0.25	1.25+0.25/-0.2	0.50+0.2/-0.3	
31	Н	3.20±0.30	1.60±0.30	1.60±0.30	0.60+0.4/-0.3	- 1206
21	K	3.20±0.30	1.60±0.30	1.60+0.30/-0.25	0.60+0.4/-0.3	1200
	I	3.20±0.40	2.50±0.30	2.00±0.30	0.60+0.4/-0.3	
32	J	3.20±0.40	2.50±0.30	2.50±0.30	0.60+0.4/-0.3	1210
	V	3.20±0.40	2.50+0.35/-0.3	2.50+0.35/-0.3	0.60+0.4/-0.3	

Caution/Notice Component sales offices/ Manufacturing sitesd

High Bending Strength

Capacitance Table (X7R/X7S)

		Cine man	Rated					(Сарас	itance				Conscitores
Category	TC	Size mm (inch)	Voltage			p	νF			n	F		uF	Capacitance Range
		. ,	(Vdc)	0.1	1		10	100	1	10	100	1	10 100	Hange
AEC-Q200	X7R	1608 (0603)	100											10nF - 22nF
ail Safe/Soft Termination	(125℃)	2012 (0805)	50											100nF - 100nF
(5mm)	(120 0)	2012 (0003)	100											100nF - 100nF
			16											10nF - 100nF
		1005 (0402)	25											10nF - 22nF
			50											10nF - 22nF
			6.3											1uF - 1uF
			10											1uF - 1uF
		1000 (0002)	16											47nF - 1uF
		1608 (0603)	25											47nF - 1uF
			50											1nF - 220nF
	X7R (125℃)		100											1nF - 220nF
		2012 (0805)	10											1uF - 1uF
			16											1uF - 4.7uF
			25											220nF - 1uF
AEC-Q200			50											15nF - 1uF
Soft ermination			100											10nF - 100nF
(5mm)			10											4.7uF - 22uF
		2216 (1206)	16											4.7uF - 10uF
		3216 (1206)	25											4.7uF - 10uF
			50											1uF - 4.7uF
			16											22uF - 22uF
		2225 (4240)	25											10uF - 10uF
		3225 (1210)	50											4.7uF - 4.7uF
			100											2.2uF - 2.2uF
		2216 (1200)	50											10uF - 10uF
		3216 (1206)	100											4.7uF - 4.7uF
	X7S (125℃)		6.3											47uF - 47uF
	(120C)	3225 (1210)	25											22uF - 22uF
			50											10uF - 10uF

Product Line up (X7R/X7S)

Size : 1.00 × 0.50mm (inch : 0402)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	0.55	16	X7R	47nF	±10%	CL05B473K05VPJ#
2	0.55	16	X7R	100nF	±10%	CL05B104K05VPJ#
3	0.55	25	X7R	10nF	±10%	CL05B103KA5VPJ#
4	0.55	25	X7R	22nF	±10%	CL05B223KA5VPJ#
5	0.55	50	X7R	10nF	±10%	CL05B103KB5VPJ#
6	0.55	50	X7R	22nF	±10%	CL05B223KB5VPJ#

Part Numbering General Capacitors High Bending Strength Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

High Bending Strength

Size : 1.60 × 0.80mm (inch : 0603)

≡

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	0.90	16	X7R	470nF	±10%	CL10B474K08VPJ#
2	0.90	16	X7R	1uF	±10%	CL10B105K08VPJ#
3	0.90	25	X7R	1uF	±10%	CL10B105KA8VPJ#
4	0.90	50	X7R	1nF	±10%	CL10B102KB8WPJ#
5	0.90	50	X7R	1.5nF	±10%	CL10B152KB8WPJ#
6	0.90	50	X7R	2.2nF	±10%	CL10B222KB8WPJ#
7	0.90	50	X7R	4.7nF	±10%	CL10B472KB8WPJ#
8	0.90	50	X7R	10nF	±10%	CL10B103KB8WPJ#
9	0.90	50	X7R	22nF	±10%	CL10B223KB8VPJ#
10	0.90	50	X7R	33nF	±10%	CL10B333KB8VPJ#
11	0.90	50	X7R	47nF	±10%	CL10B473KB8VPJ#
12	0.90	50	X7R	68nF	±10%	CL10B683KB8VPJ#
13	0.90	50	X7R	100nF	±10%	CL10B104KB8VPJ#
14	0.90	50	X7R	220nF	±10%	CL10B224KB8VPJ#
15	0.90	100	X7R	1nF	±10%	CL10B102KC8WPJ#
16	0.90	100	X7R	2.2nF	±10%	CL10B222KC8WPJ#
17	0.90	100	X7R	4.7nF	±10%	CL10B472KC8WPJ#
18	0.90	100	X7R	10nF	±10%	CL10B103KC8WPJ#
19	0.90	100	X7R	22nF	±10%	CL10B223KC8VPJ#
20	0.90	100	X7R	47nF	±10%	CL10B473KC8VPJ#
21	0.90	100	X7R	100nF	±10%	CL10B104KC8VPJ#
22	1.00	50	X7R	1uF	±10%	CL10B105KB9VPJ#
23	0.90	50	X7R	470nF	±10%	CL10B474KB8VPJ#
24	0.90	50	X7R	330nF	±10%	CL10B334KB8VPJ#

Size : 2.00 × 1.25mm (inch : 0805)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.45	16	X7R	1uF	±10%	CL21B105KOFVPJ#
2	1.45	16	X7R	2.2uF	±10%	CL21B225KOFVPJ#
3	4.50	16	X7R	4.7uF	±10%	CL21B475KOQVPJ#
4	1.45	25	X7R	1uF	±10%	CL21B105KAFVPJ#
5	1.45	50	X7R	100nF	±10%	CL21B104KBFWPJ#
6	1.45	50	X7R	220nF	±10%	CL21B224KBFVPJ#
7	1.45	50	X7R	330nF	±10%	CL21B334KBFVPJ#
8	1.45	50	X7R	470nF	±10%	CL21B474KBFVPJ#
9	1.45	50	X7R	1uF	±10%	CL21B105KBFVPJ#
10	1.45	100	X7R	10nF	±10%	CL21B103KCCWPJ#
11	1.45	100	X7R	22nF	±10%	CL21B223KCFWPJ#
12	1.45	100	X7R	47nF	±10%	CL21B473KCFWPJ#
13	1.45	100	X7R	100nF	±10%	CL21B104KCFWPJ#
14	1.45	100	X7S	1uF	±10%	CL21Y105KCFVPJ#
15	1.50	50	X7S	4.7uF	±10%	CL21Y475KBBVPJ#

Part Numbering General Capacitors High Bending Strength Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

High Bending Strength

Size : 3.20 × 1.60mm (inch : 1206)

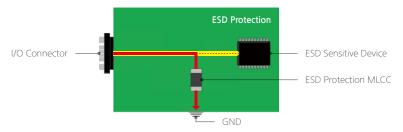
Ξ

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	1.90	16	X7R	4.7uF	±10%	CL31B475KOHVPJ#
2	1.90	16	X7R	10uF	±10%	CL31B106K0HVPJ#
3	1.90	25	X7R	4.7uF	±10%	CL31B475KAHVPJ#
4	1.90	25	X7R	10uF	±10%	CL31B106KAHVPJ#
5	1.90	50	X7R	1uF	±10%	CL31B105KBHVPJ#
6	1.90	50	X7R	2.2uF	±10%	CL31B225KBHVPJ#
7	1.90	50	X7R	4.7uF	±10%	CL31B475KBHVPJ#
8	1.90	50	X7S	10uF	±10%	CL31Y106KBKVPJ#
9	1.90	100	X7S	2.2uF	±10%	CL31Y225KCHVPJ#
10	1.90	50	X7S	10uF	±10%	CL31Y106KBKVPJ#
11	1.90	10	X7R	22uF	±10%	CL31B226KPKVPJ#
12	1.90	6.3	X7R	22uF	±10%	CL31B226KQKVPJ#

Size : 3.20 × 2.50mm (inch : 1210)

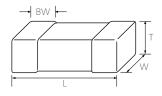
No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number
1	2.85	6.3	X7S	47uF ±20%		CL32Y476MQVVPJ#
2	2.80	16	X7R	22uF	±10%	CL32B226K0JVPJ#
3	2.80	25	X7R	10uF	±10%	CL32B106KAJVPJ#
4	2.80	50	X7R	4.7uF	±10%	CL32B475KBJVPJ#
5	2.80	50	X7S	10uF	±10%	CL32Y106KBJVPJ#
6	2.30	100	X7S	4.7uF	±10%	CL32Y475KCIVPJ#
7	2.80	100	X7R	2.2uF	±10%	CL32B225KCJVPJ#
8	2.85	25	X7S	22uF	±10%	CL32Y226KAVVPJ#
9	2.85	10	X7S	47uF	±20%	CL32Y476MPVVPJ#
10	2.85	6.3	X7R	47uF	±10%	CL32B476KQVVPJ#

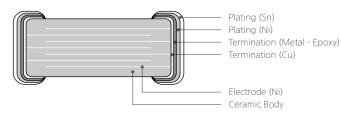
Fail Safe Application Guide Reliability Test Conditions Packaging Specifications


Caution/Notice Component sales offices/ Manufacturing sitesd

ESD Protection

Features


- Compliance with the IEC 61000-4-2 standard for ESD immunity.
- Enhanced DC-Bias



Applications

Input and output sections in a wide range of automotive electronics.

Structure and Dimensions

Size Code		Dimension (mm)								
Size Code	L W T BW									
10	1.70±0.10	0.90±0.10	0.90±0.10	0.30±0.20	0603					

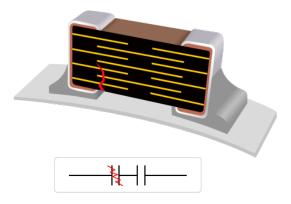
Capacitance Table (COG/X8G)

	TC Size mm (inch)	Rated	Capacitance									Capacitance		
Category			Voltage	pF					nF			uF		Range
		(interity	(Vdc)	0.1	1	10	100	1	10	100	1	10	100	nange
AEC-Q200 ESD Protection	X7R (125℃)	1608 (0603)	100											1nF - 10nF

Product Line up (X7R)

```
Size : 1.60 × 0.80mm (inch : 0603)
```

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number	ESD Level
1	1.00	100	X7R	1nF	±10%	CL10B102KC84PE#	20kV
2	1.00	100	X7R	1.5nF	±10%	CL10B152KC84PE#	20kV
3	1.00	100	X7R	2.2nF	±10%	CL10B222KC84PE#	20kV
4	1.00	100	X7R	3.3nF	±10%	CL10B332KC84PE#	20kV
5	1.00	100	X7R	4.7nF	±10%	CL10B472KC84PE#	20kV
6	1.00	100	X7R	6.8nF	±10%	CL10B682KC84PE#	20kV
7	1.00	100	X7R	10nF	±10%	CL10B103KC84PE#	22kV


Caution/Notice Component sales offices/ Manufacturing sitesd

Fail Safe (Soft Termination 5mm)

Features

- Designed to prevent circuit malfunction in the case of an internal shunt, caused by a crack which occurrs in a MLCC product.
- This also guarantees 5mm bending and prevents defects caused by PCB deformation.
- This product has the highest degree of safety among all MLCCs.
 - Series(Float) Design : Designed to operate like two MLCCs in a series
 - Even if a defect such as a crack occurs on one side, the circuit can be protected on the other side
- 5mm Bending Guarantee : 5mm bending strength guaranteed

Applications

Automotive application

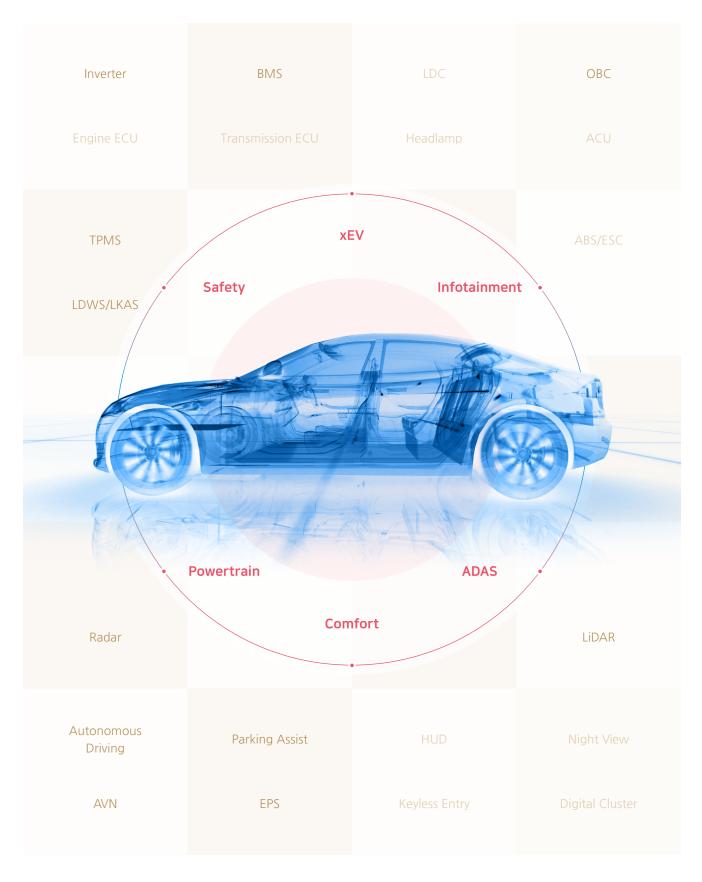
Capacitance Table

Category	тс	Size mm (inch)	Rated Voltage (Vdc)	Capacitance								Canacitanaa		
				pF					nF			uF		Capacitance Range
				0.1	1	10	100	1	10	100	1	10	100	
AEC-Q200 Fail Safe/ Soft Termination (5mm)	X7R (125℃)	2012 (0805)	50											100nF - 100nF
			100											100nF - 100nF

Product Line up (X7R)

Size : 1.60 × 0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тс	Capacitance	Capacitance Tolerance	Part Number		
1	1.45	50	X7R	100nF	±10%	CL21B104KBFXPJ#		
2	1.45	100	X7R	100nF	±10%	CL21B104KCFXPJ#		


≡

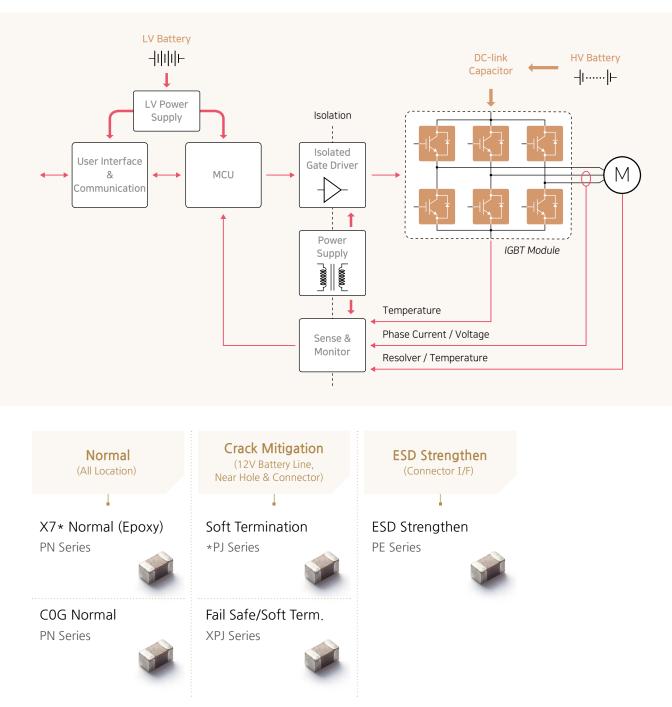
Part Numbering General Capacitors High Bending Strengtl ESD Protection Fail Safe

 Application Guide
 Reliability Test Conditions
 Packaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd

Application Guide

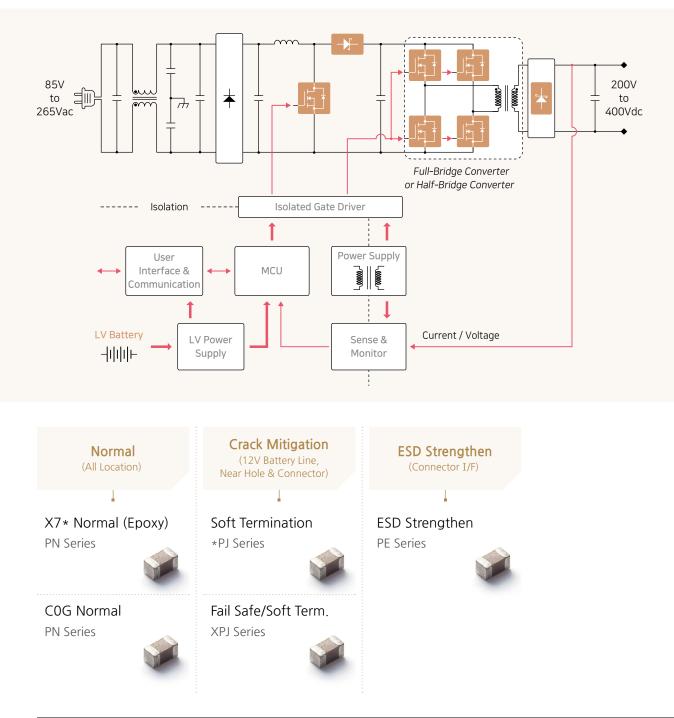
Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

Main Inverter

A Main Inverter provides energy to the vehicle's driving motor. The main inverter directly uses a high voltage battery power through a DC-Link capacitor and performs improvement of the fuel economy of the vehicle by absorbing energy through a regenerative braking function.

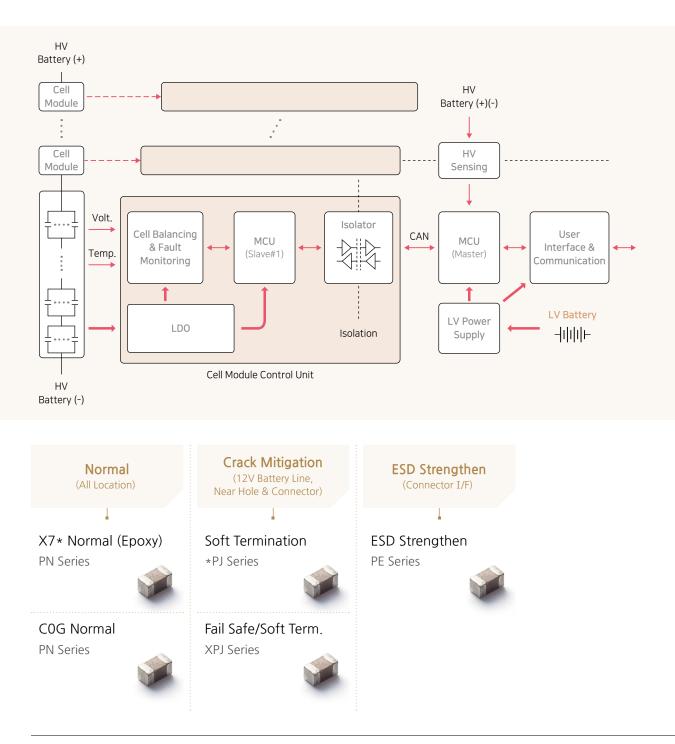
Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

On Board Charger

An On-Board Charger (OBC) is a built-in system to charge a high voltage battery from AC power outside the car. OBC allows a vehicle for a standard charge at a charging station as well as at home.

EV

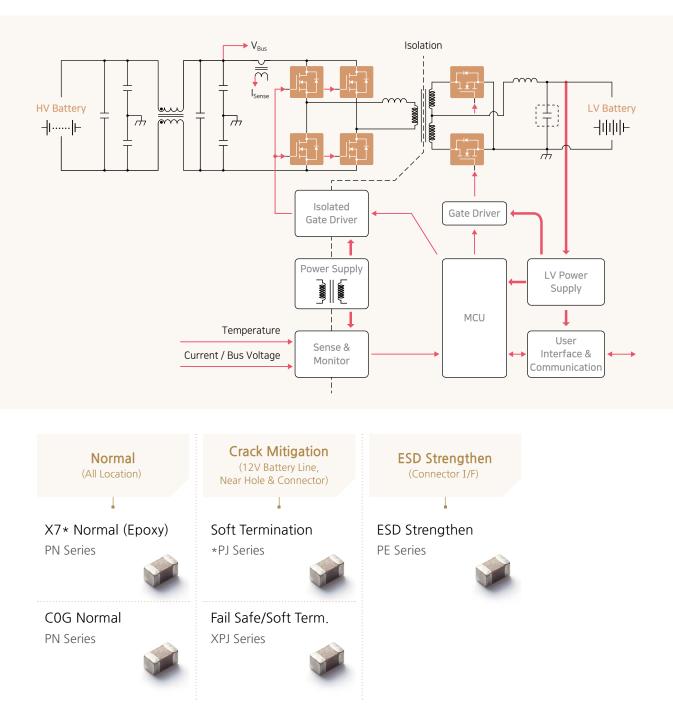

Part Numbering General Capacitors High Bending Strengt ESD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

Application Guide

Battery Management System

A Battery Management System (BMS) is the control system that manages a high voltage battery built with numerous cells, monitoring and controlling temperatures and voltage of the each cell.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

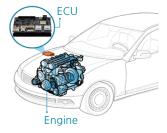
EV

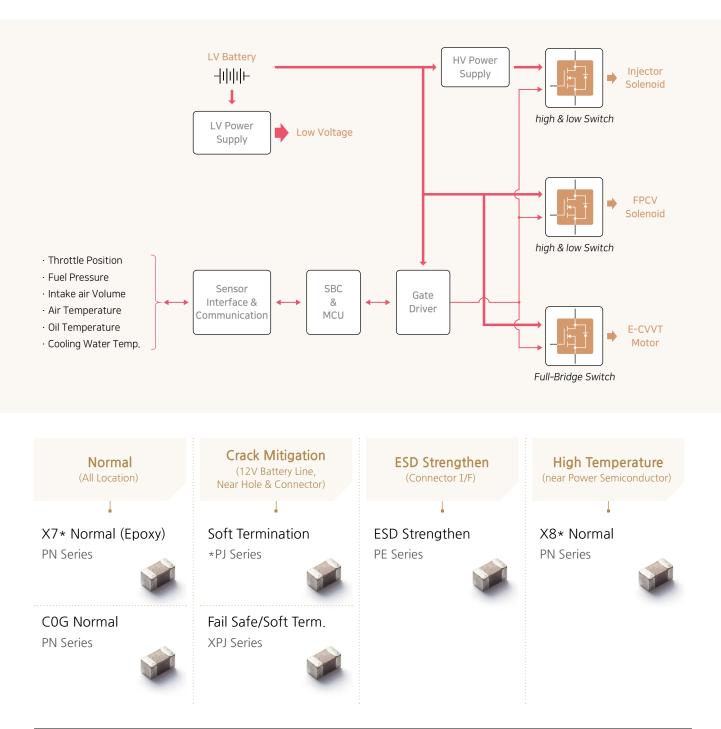
DC-DC Converter (High Voltage to 12V)

A DC-DC Converter converts a high voltage battery into a 12V battery. As there is no engine using fossil fuels, the DC-DC Converter plays a role in charging a 12V battery as an alternator used the engine to charge a 12V battery.

Part Numbering General Capacitors High Bending Strengt FSD Protection Fail SafeApplication GuideReliability Test ConditionsPackaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

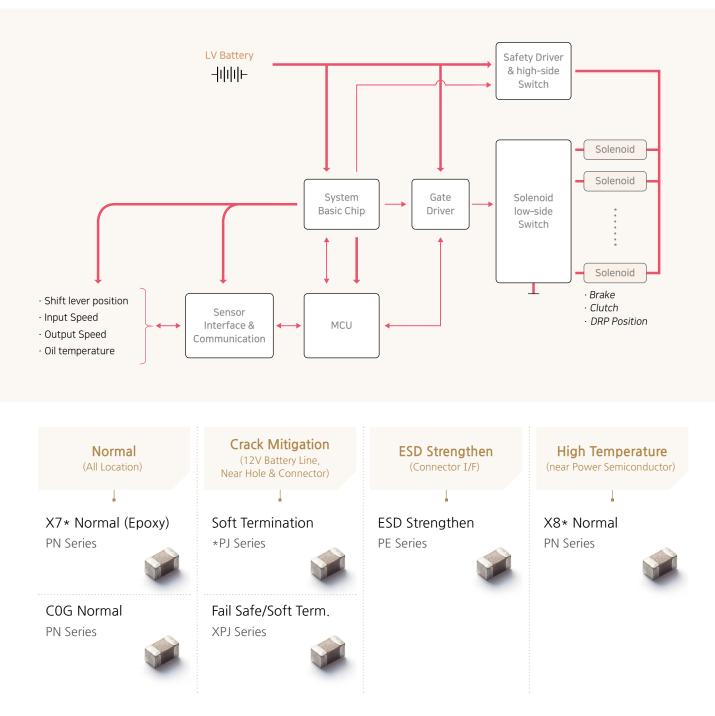

Powertrain

Engine Control Unit

An Engine Control Unit (ECU) is a type of electronic control unit that provides the power with a series of actuators on an engine.

It is becoming increasingly significant to reduce gas emission and improve fuel efficiency by the stricter global environmental regulation. Regarding the situation, ECU collects data from various sensors on an engine, controlling its components in the unit.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

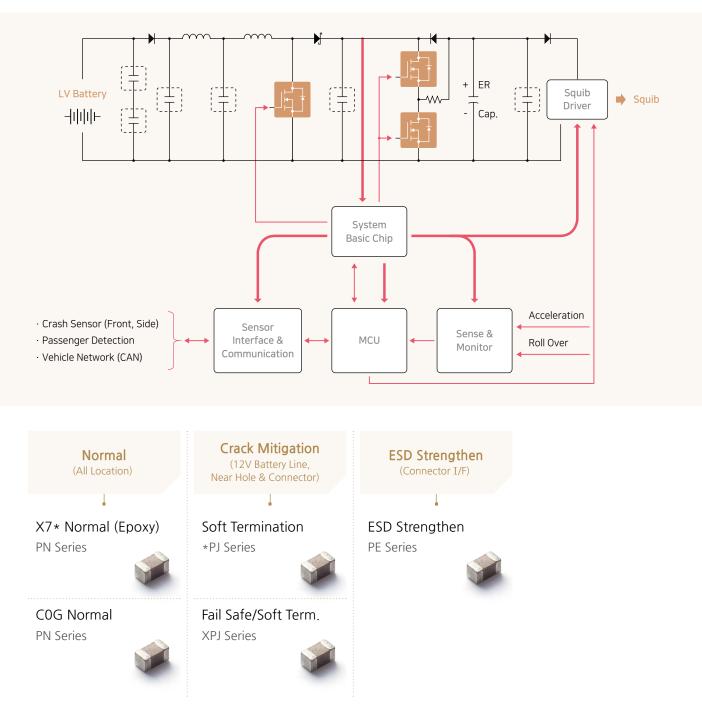

Application Guide

Powertrain

Transmission Control Unit

A transmission is an automatic device that transmits output torque from a crank shaft on an engine to wheels. TCU controls determines the ratio of a transmission, controlling its unit to transmit the ratio. As TCU is getting closer to the transmission to reduce price and weight for the transmission system, an operating temperature of TCU is getting increasing.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

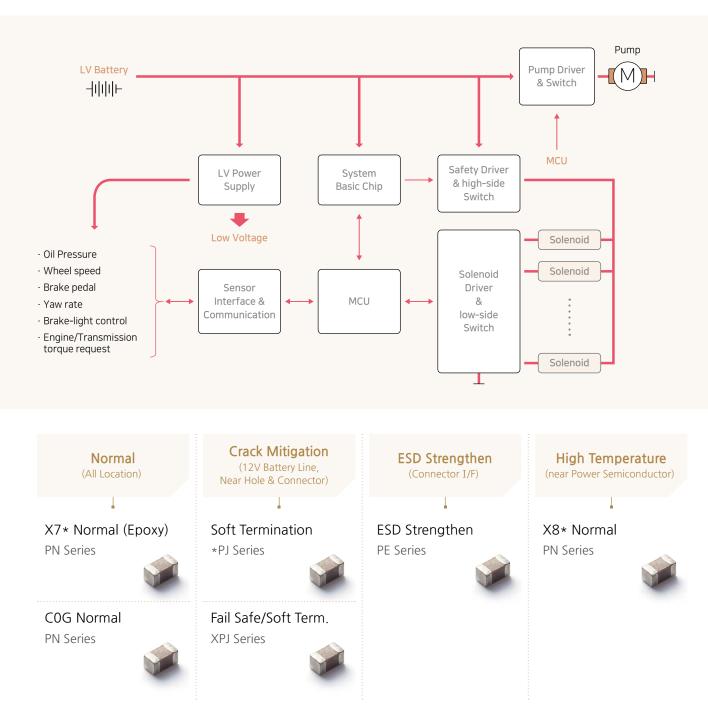

Application Guide

Chassis

Airbag Control Unit

An Airbag Control Unit (ACU) determines whether to run restraint systems according to the level of an accident being detected by an Airbag Control Unit. Acceleration sensor and speed sensor are embedded in an airbag system.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

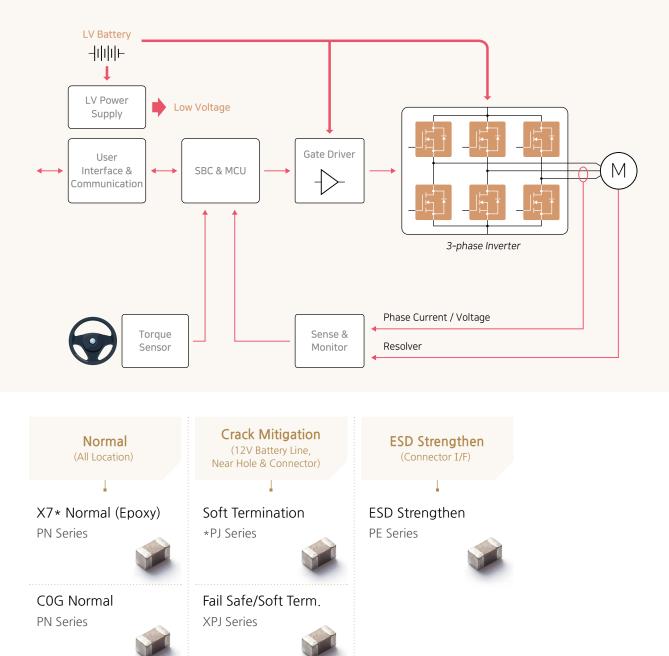

Application Guide

Chassis

Brake Actuation Unit

A Brake Actuation Unit is an integrated control system including functions of an integrated active hydraulic booster and Electronic Stability Control (ESC). BAU provides hydraulic pressure to brake calipers to control braking force on the vehicle.

Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

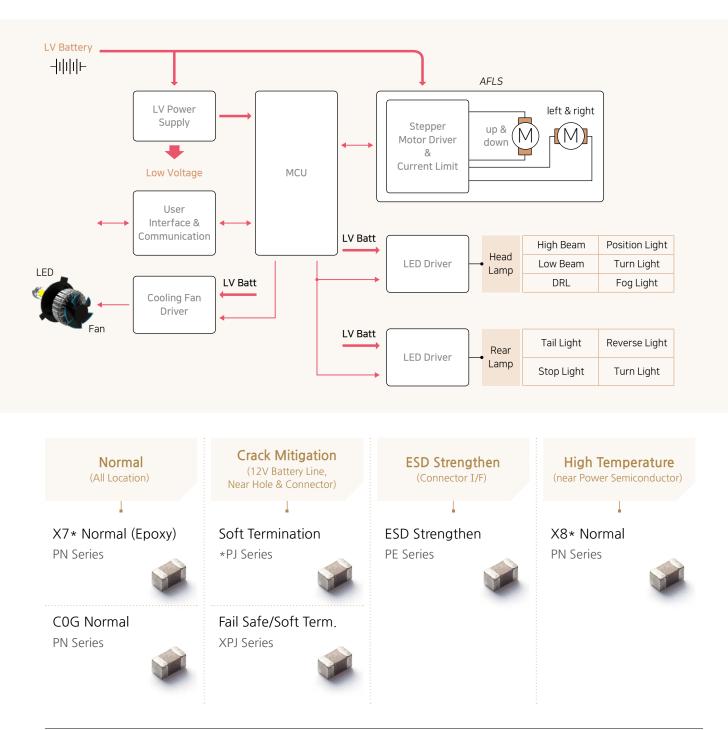
Chassis

Electric Power Steering

An Electric Power Steering (EPS) helps drivers turn a steering wheel of a vehicle via an electric motor. EPS gives an opportunity to augment the quality of driving to the driver, making it easier for the driver to put less efforts to turn the steering wheel.

Fail SafeApplication GuideReliability Test ConditionsPackaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd

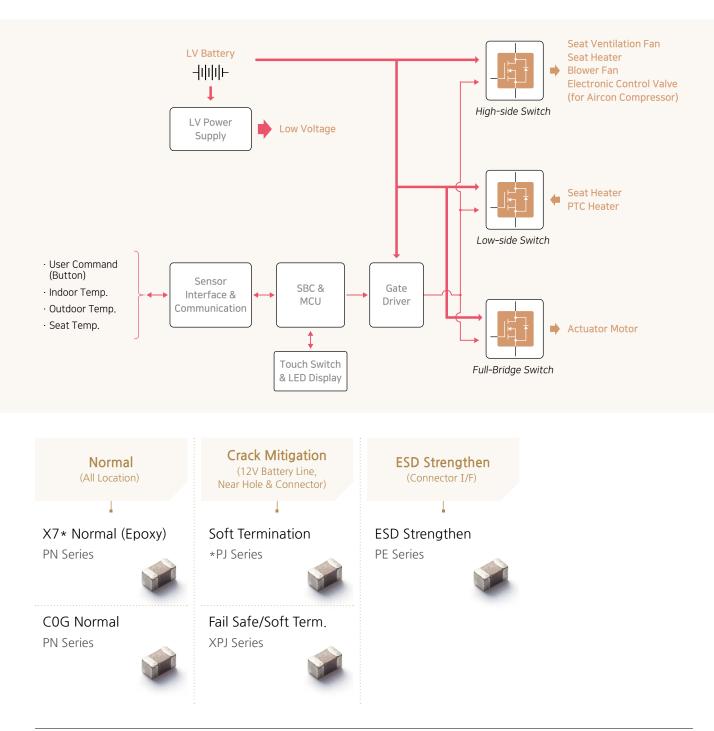

Application Guide

Body

LED Light Module with AFLS

A number of drivers favor a vehicle with head and rear ramps using LED that provides power efficiency, long lifespan and a various designs available. AFLS is an adaptive front lighting system to modulate the angles of the beam according to the driving direction of a vehicle.

Part Numbering General Capacitors High Bending Strengt FSD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

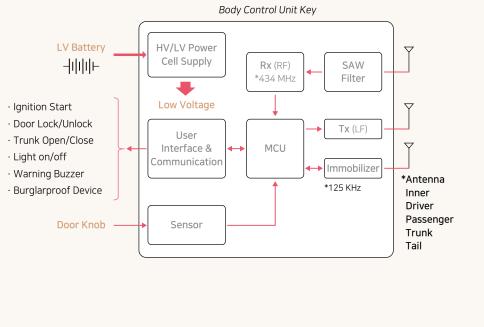
Body

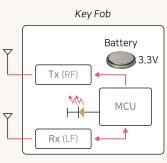
Heating, Ventilation, Air Conditioning

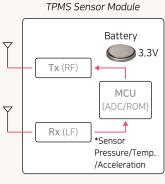
A Heating & Ventilation, Air Conditioning (HVAC) system provides indoor environmental comfort of a vehicle: thermal comfort and high indoor air quality. For this, a heater, a fan and an air-conditioning compressor are operated after the HVAC system analyzes temperatures inside the vehicle. Actuators are used to control the direction of the fan and the air flow.

Fail SafeApplication GuideReliability Test ConditionsPackaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd

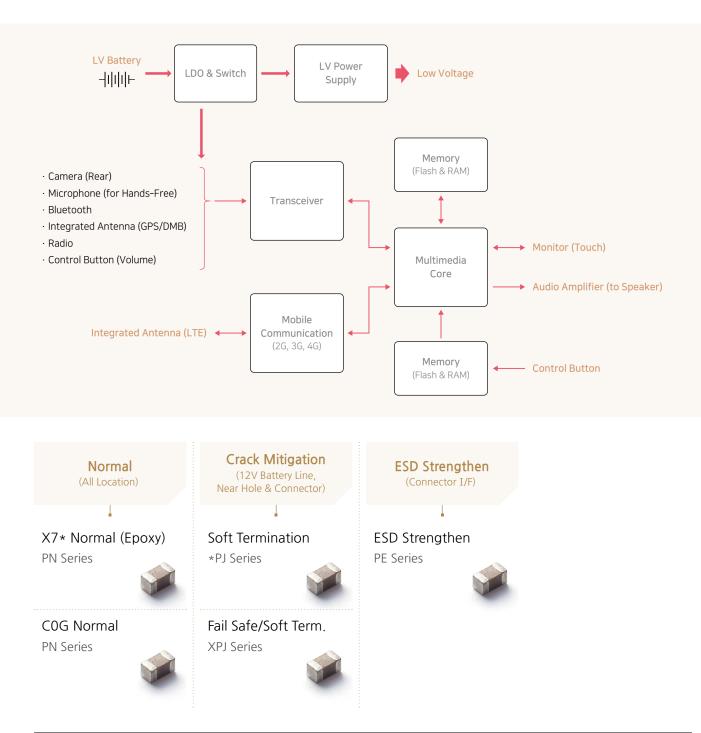

Application Guide


Body


Smart key Control System & TPMS

A Smart Key Control System offers automatic driver recognition, a door lock and unlock function and an engine starter function. Basic functions and optional functions are available depending on a type of vehicles.

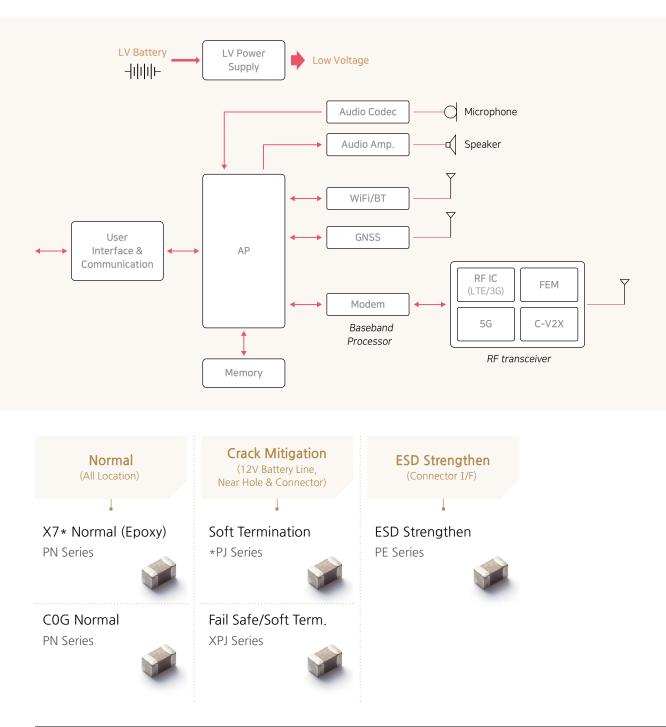
Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

Head Unit (for AVN)

A Head Unit is a main control system of AVN (Audio, Video, Navigation). It provides unified hardware interface for devices such as a camera, microphone and an antenna to turn on a video and a stereo system according to user command.

Caution/Notice Component sales offices/ Manufacturing sitesd

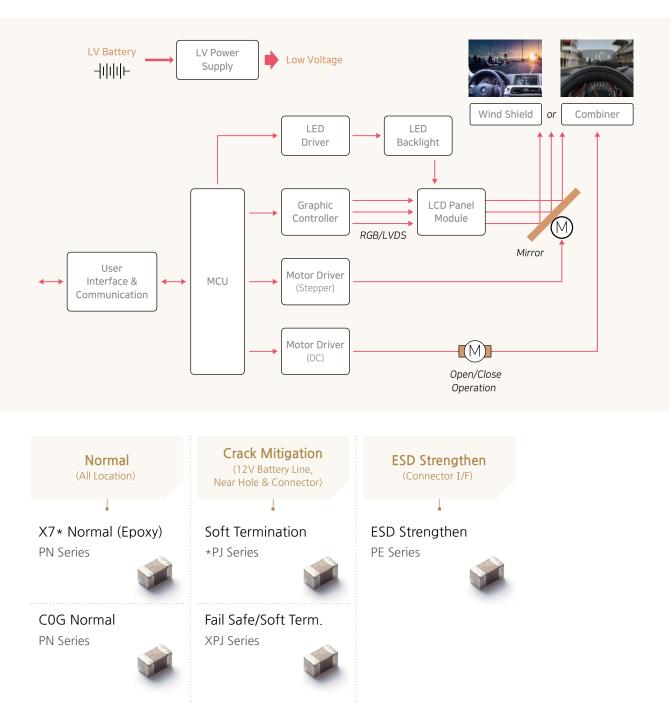

Application Guide

IVI

Telematics Control Unit

A Telematics Control Unit realizes a wireless network to provide an infotainment service such as route guidance using location information, traffic information, emergency recovery, the Internet, movies, games and so on, which is intended for drivers' safety and convenience.

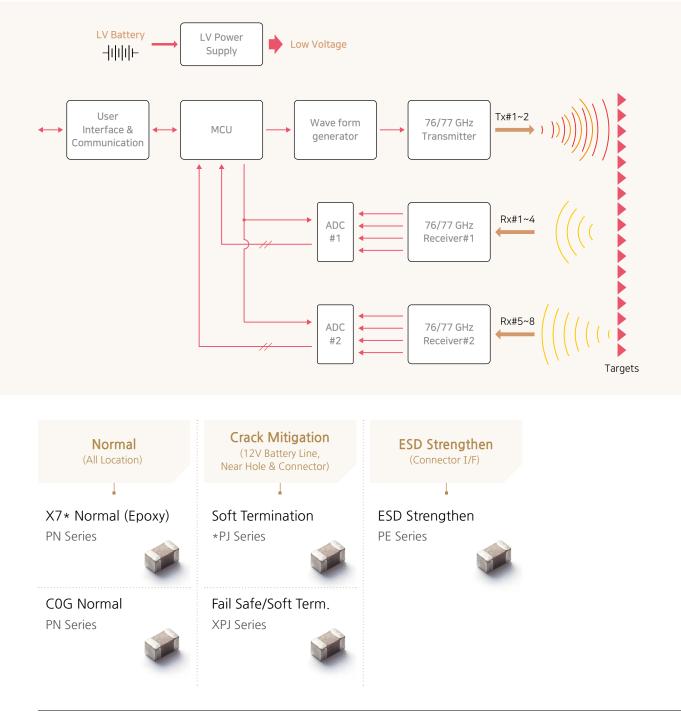
Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

Head Up Display

A Head Up Display (HUD) is a transparent display that presents data on driving with an image on a wind shield or a combiner from drivers viewpoint.

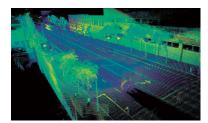
Caution/Notice Component sales offices/ Manufacturing sitesd

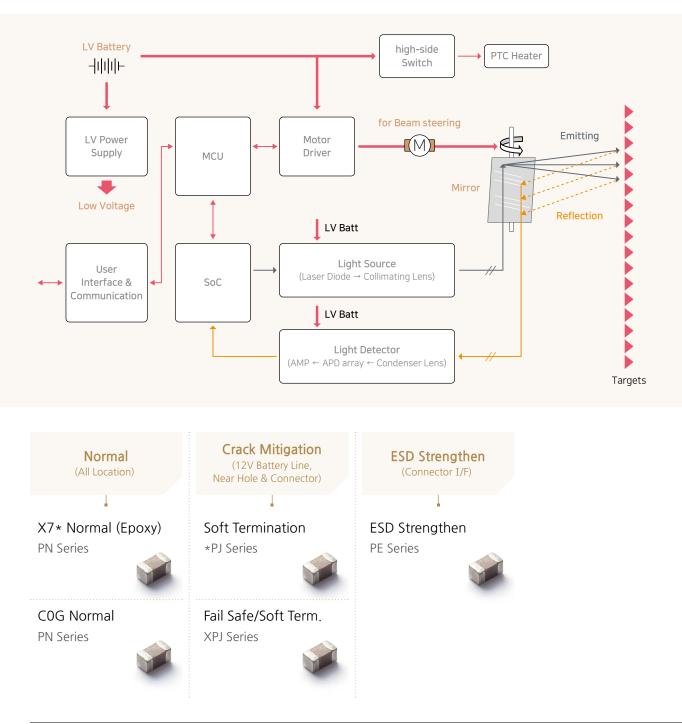

Application Guide

ADAS

Smart Cruise Control (Radar)

Smart Cruise Control (SCC) is a driver-friendly system to automatically adjust a vehicle speed and to maintain a safe distance from vehicles ahead by radar.


Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

ADAS

Light Detection And Ranging

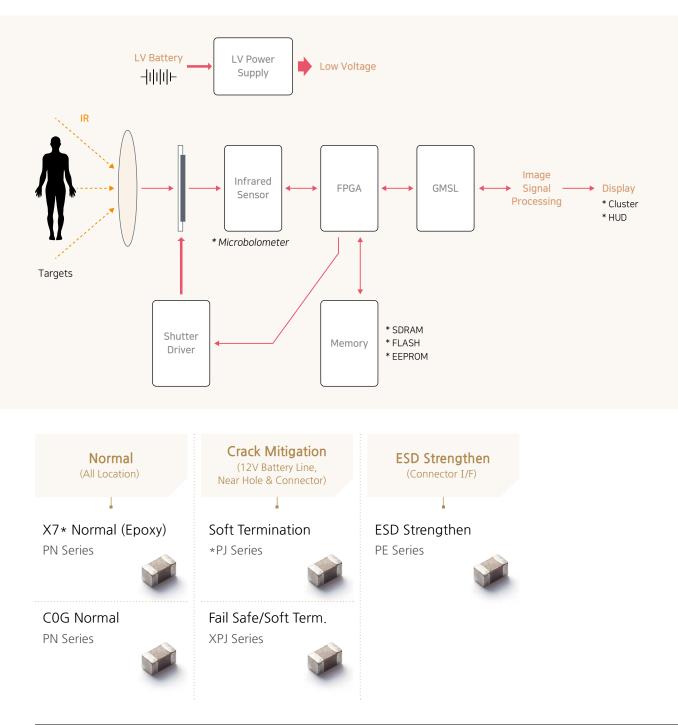
A LiDAR system creates 2D&3D images by measuring a distance with laser beam. LIDAR is considerable regarded as a significant technology to achieve complete autonomous driving.

Ξ

Part Numbering General Capacitors High Bending Strengt FSD Protection Fail Safe

 Application Guide
 Reliability Test Conditions
 Packaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

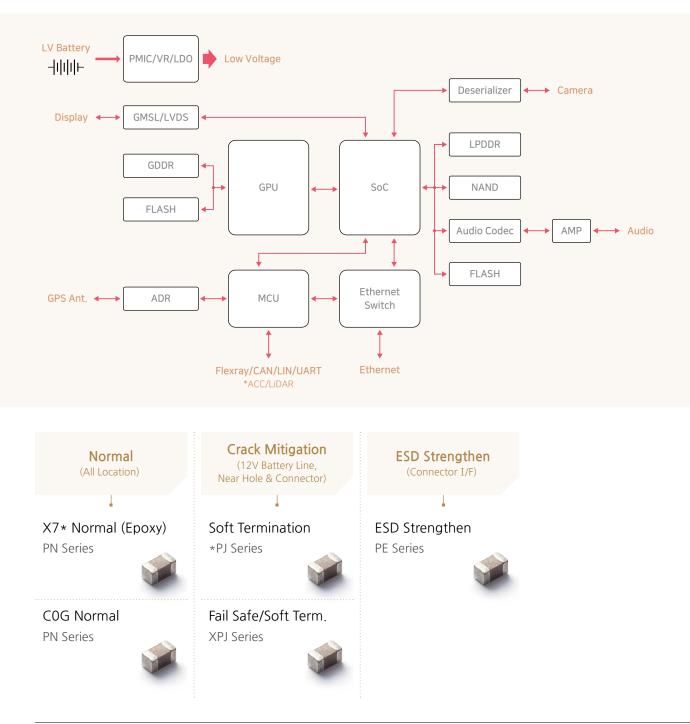
ADAS

Night Vision System

A Night Vision System is intended to take greater care of driver's view at night by proving reliable visual information. It enables drivers to increase their perception and seeing distance in darkness, which is beyond the reach of the vehicle's headlights. The Night Vision System uses an infrared camera using thermography or infrared reflective light for awareness of surroundings where human drivers hardly notice them in darkness.

Fail SafeApplication GuideReliability Test ConditionsPackaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd


Application Guide

ADAS

Autonomous Control Unit

An autonomous vehicle is no longer to need driver's effort during driving safely, known as "Autonomous" or a "Driverless car", where the driver is able to leave all responsibility to operate systems. Autonomous unit analyzes big data on sensor, operating functions to search routes, control and drive the vehicle.

Reliability Test Conditions

Reliability Test Conditions

۷o.		Item		Performance		Test condition			
1	Pre-and Po	st-Stress Elec	trical Test	-					
		Appear	ance	No abnormal exterior appearance	-				
		Capacitance	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	Unpower	ed, 1000hrs@T = 125℃			
		Change	Class II	Within±10%	Initial Measurement				
2	High Temper- ature	Q Class I		Capacitance \geq 30pF : Q \geq 1,000 $<$ 30pF : Q \geq 400 + 20 × C (C : Capacitance)	Perform and leave	the heat treatment at 150°C +0/-1 the capacitor in ambient condition leasurement. Then perform the me	n for 24±2 hours		
	Exposure	Tanδ	Class II	Rated Voltage ≥ 25V : 0.030 max ≥ 16V : 0.050 max ≤ 10V : 0.075 max ^{*1)}	Final Measurement Leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.				
		IR		More than 10,000MD or 500MD \times μF (Whichever is smaller)*1)		, , , , , , , , , , , , , , , , , , ,			
		Appear	ance	No abnormal exterior appearance	1000Cyc	les			
		Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	Initial Me Perform	asurement the heat treatment at 150°C +0/-11 e the capacitor in ambient conditior			
			Class II	Within±10%	before m	easurement. Then perform the me	easurement.		
3	Temper- ature	Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)	Leave the	Final Measurement Leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.			
	Cycling			Rated Voltage ≥ 25V : 0.030 max	Step	Temperature (°C)	Time (min.)		
		Tanδ	Class II	≥ 16V : 0.050 max	1	Min. operating Temp.+0/-3			
				≤ 10V : 0.075 max ^{*1)}	2	25±2	1		
				More than 10,000MΩ or 500MΩ × μ F	3	Max. operating Temp.+3/-0	- 30±3		
		IR		(Whichever is smaller) ^{*1)}	4	25±2	1		
4	Destruct	tive Physical A	nalvsis	No defects or abnormalities	Per EIA 469				
-		Appear		No abnormal exterior appearance					
		Capacitance	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)		85℃/85%RH, Rated voltage and 1. kohm resistor)	3 ~ 1.5V,		
		Change	Class II	Within±12.5%	Initial Me	asurement			
5	Biased Humidity	Q	Class I	Capacitance ≥ 30pF : Q ≥ 200 < 30pF : Q ≥ 100 + (10/3) × C (C : Capacitance)	and leave	the heat treatment at 150°C +0/-11 e the capacitor in ambient condition leasurement. Then perform the me	n for 24±2 hours		
		Tanδ	Class II	Rated Voltage ≥ 25V : 0.035 max ≥ 16V : 0.050 max ≤ 10V : 0.075 max ^{*1)}	Perform	asurement the heat treatment at 150°C +0/-10 e the capacitor in ambient conditior			
		IR		More than 500MQ or 25MQ × μF (Whichever is smaller) $^{^{*1)}}$		easurement. Then perform the me			
		Appear	ance	No abnormal exterior appearance					
		Capacitance Change	Class I	Within±3.0% or ±0.3pF, (Whichever is larger)	1000hrs	@ TA = 125°C, 200% Rated Voltag	e, ^{*2)}		
			Class II	Within±12.5%		asurement			
6	High Temper- ature Operating	Q	Class I	Capacitance \geq 30pF : Q \geq 350 \geq 10pF : Q \geq 275 + (5 / 2) X C $<$ 10pF : Q \geq 200 + 10 × C (C : Capacitance)	and leave before m	the heat treatment at 150°C +0/-11 e the capacitor in ambient condition leasurement. Then perform the me	n for 24±2 hours		
	Life	Tanó	Class II	Rated Voltage ≥ 25V : 0.035 max ≥ 16V : 0.050 max ≤ 10V : 0.075 max ^{*1)}	Perform and leave	asurement the heat treatment at 150°C +0/-11 e the capacitor in ambient condition leasurement. Then perform the me	n for 24±2 hours		
		IR		More than 1,000MΩ or 50MΩ × μ F (Whichever is smaller) ^{*1)}	berore III	before measurement. Then perform the measurement.			

* *1): Indicates typical specification. Please refer to individual specifications.
 *2): Some of the parts are applicable in rated voltage × 150% or × 120%, Please refer to individual specifications.

Fail Safe Application Guide Reliability Test Conditions Caution/Notice Component sales offices/ Manufacturing sitesd

Reliability Test Conditions

No.		Item		Performance		Test co	ndition					
7	E	xternal Visual		No abnormal exterior appearance	Microscope (×10	C)						
8	Phy	sical Dimensio	ns	Within the specified dimensions	Using the calipe	rs						
		Appear	ance	No abnormal exterior appearance	Three shocks in	each direction s	should be applie	d along				
		Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	3 mutually perpendicular axes of the test specimen (18 shock							
		Change	Class II	Within±10%	Peak value	Duration 0.5ms	Wave Half sine	Velocity				
9	Mechanical Shock	Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)	Initial Measurement Perform the heat treatment at 150°C +0/-10°C for							
		Tanó	Class II	Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≤ 10V : 0.050 max ^{*1)}	and leave the ca before measure Final Measurem	ment. Then perf						
		IR		More than 10,000MΩ or 500MΩ × μF (Whichever is smaller)*1)	Leave the capac before measure							
		Appear	ance	No abnormal exterior appearance	5g's for 20min.,	12cycles each o	of 3 orientations					
		Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	Use 8"× 5" PCB and 2 secure po			one long side 5. Parts mounted				
		Chunge	Class II	Within±10%	within 2" from a	ny secure point.	Test from 10~2	2000Hz.				
10	Vibration	Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)		at treatment at 1	secure point. Test from 10~2000Hz. nt creatment at 150°C +0/-10°C for 1 hour acitor in ambient condition for 24±2 hours					
		Tanδ	Class II	Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≤ 10V : 0.050 max ^{*1)}	before measure Final Measurem	easurement. Then perform the measurement.		rement.				
		IR		More than 10,000MQ or 500MQ × μF (Whichever is smaller) $^{*1)}$								
		Appear	ance	No abnormal exterior appearance								
		Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	Solder pot : 260	±5℃, 10±1sec.						
		Change	Class II	Within±10%	Initial Measurem	nent						
11	Resistance to Solder Heat	Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)	Perform the heat treatment at 150°C +0/-10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hou before measurement. Then perform the measurement.							
	neut	Tanδ	Class II	Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≤ 10V : 0.050 max ^{*1)}		titor in ambient o						
		IR		More than 10,000MQ or $500MQ \times \mu F$ (Whichever is smaller) ^{*1)}								
		Appear	ance	No abnormal exterior appearance								
		Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	AEC - Q200 - OC							
		спануе	Class II	Within±10%	Initial Measurem Perform the hea		150°C +0/_10°C f	or 1 hour				
12	ESD	Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)	and leave the ca before measure	apacitor in ambie	ent condition for	24±2 hours				
		Tanδ	Class II	Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≤ 10V : 0.050 max ^{*1)}	Final Measurement Perform the heat treatment at 150°C +0/-10°C for 1 hou and leave the capacitor in ambient condition for 24±2 h							
		IR		More than 10,000MQ or 500MQ × μF (Whichever is smaller) $^{^{*1)}}$	before measure	ment. Then perf	form the measu	rement				
13		Solderability (Whichever is smaller) ^{*1/2} a) Preheat at 155°C for 4 hrs, Immerse in solder for b) Steam aging for 8 hrs, Immerse in solder for 5 solder aging for 8 hrs, Immerse in solder for 120 solder : a solution ethanol and rosin				5s at 245±5℃						

(* *1) : Indicates typical specification. Please refer to individual specifications.

Fail Safe Application Guide Reliability Test Conditions Caution/Notice Component sales offices/ Manufacturing sitesd

Reliability Test Conditions

No.		Item		Performance			Test condit	ion			
		Capacit	tance	Within specified tolerance							
		Q	Class I	Capacitance ≥ 30pF : Q ≥ 1,000 < 30pF : Q ≥ 400 + 20 × C (C : Capacitance)		The Capacitance / D.F. should be measured at 25°C, * Capacitance shall be measured after the heat treatment of					
		Tanô Class		Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max	150+0 / -10°c for 1hr and leaving for 24±2hr at room temperature						
				≤ 10V : 0.050 max ^{*1)}	Class	≤1,000			0.5 ~ 5	-	
14	Electrical Characteri-	IR@25℃	Class I	More than 100,000MΩ or 1,000MΩ × μF (Whichever is smaller)	I	≤1,000μ >1,000μ ≤10μF	OF 1kHz+1			2Vrms	
	zation		Class II	More than 10,000MΩ or 500MΩ × μ F (Whichever is smaller)	II	>10µF	120Hz		0.5±0.		
			Class I	More than 10,000MΩ or 100MΩ × μF (Whichever is smaller)		l. should be measured with a DC voltage not exceeding ated Voltage @25°C, @125°C for 60 ~ 120 sec.					
		IR@125℃	Class II	More than 1,000MQ or $10MQ \times \mu F$ (Whichever is smaller)	Dielectric Strength : 250% of the rated voltage for The charge / discharge current is less than 50mA.			5 seconds			
		Dielectric Strength		No dielectric breakdown or mechanica breakdown							
		Appear	ance	No abnormal exterior appearance	Bending	to the limit i	for 60 seconds.				
15	Board Flex	Capacitance	Class I	Within±5.0% or ±0.5pF, (Whichever is larger)	(5 40mm	(inch) Di 1201)	board flex test)	a 0.3	b 0.9		
		Change	Class II	Within±10%	10 (0 21 (0 31 (1 32 (1 Materia Thickne Initial M Perform and leav before r Final Me Leave th	easurement the heat tre ve the capaci measurement easurement ne capacitor	1.0 × 0.5 1.6 × 0.8 2.0 × 1.25 3.2 × 1.6 3.2 × 2.5 y substrate * 03(0201), 05(04 eatment at 150°C tor in ambient condi t. Then perform	: +0/-10°C ondition f the meas tion for 2	C for 1 ho or 24±2 ł surement 24±2 hou	nours rs	

* *1) : Indicates typical specification. Please refer to individual specifications.

Reliability Test Conditions

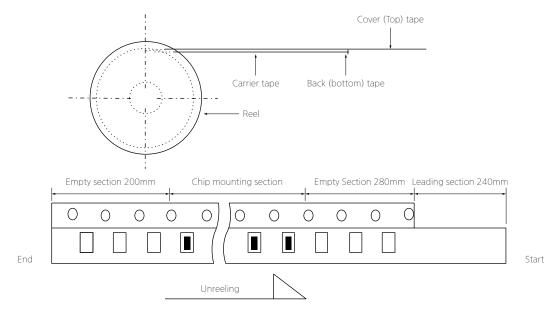
Reliability Test Conditions

No.		Item		Performance		Test condition
		Appear	ance	No abnormal exterior appearance	18N, for 60	
16	Terminal Strength (SMD)	Capacitance Change	Class I	Within±2.5% or ±0.25pF, (Whichever is larger)	Initial Meas Perform th and leave t	8)-10N, 0402(1005), 0201(0603)-2N surement le heat treatment at 150°C +0/-10°C for 1 hour the capacitor in ambient condition for 24±2 hours asurement. Then perform the measurement.
	(300)	Change	Class II	Within±10%	Final Meas Leave the	
17	Beam Load			Destruction value should be exceed Chip Length ≤ 2.5mm a) Chip Thickness > 0.5mm : 20N b) Chip Thickness = 0.5mm : 8N c) Chip Thickness = 0.3mm : 5N Chip Length ≥ 3.2mm a) Chip Thickness ≥ 1.25mm : 54.5N b) Chip Thickness < 1.25mm : 15N	Chip Leng	ed :h ≤ 2.5mm, 20N, 8N, 0.50±0.05mm / sec. th ≤ 2.5mm, 5N, 0.10±0.01mm / sec. th ≥ 3.5mm, 2.50±0.25mm / sec.
10	Capacitance Tempera-	Capacitance	Class I	0±30ppm / °C	following to Step 1 2 3 4 5 Class I	te shall be measured by the steps shown in the able. Temperature (*C) 25±2 Min. operating temp.±2 25±2 Max. operating temp.±2 25±2 ure Coefficient shall be calculated from the formula
18	ture Character- istics	Change	Class II	X7R : Within±15% X7S : Within±22% X8L : Within±15% (-55 ~ 125℃) +15/-40% (125 ~ 150℃)	as below Temp. Coe $C_1 : Capacita \Delta T : (each s)Class IICapacitancebelow\Delta C = C_2 - C_1C_1$	fficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^{6} [\text{ppm /°C}]$ ance at step 3 C_2 : Capacitance at step 3, step 4 tep temperature) - (25°C) the change shall be calculated from the formula as $\frac{C_1}{2} \times 100 (\%)$ ance at step 3 C_2 : Capacitance at step 2 or step 4

* *1) : Indicates typical specification. Please refer to individual specifications. If you want more detaiedl imformation, Please Visit Samsung Electro - mechanics website (www.semlcr.com)

Fail SafeApplication GuideReliability Test ConditionsPackaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd


Packaging Specifications

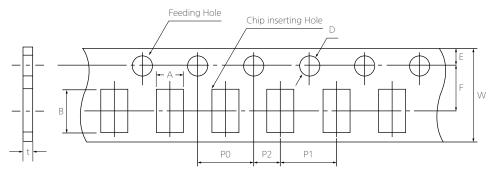
Packaging

=

This specification applies to taping of MLCC When customers require, the specification may be changed under the agreement.

1 Figure

2 Quantity

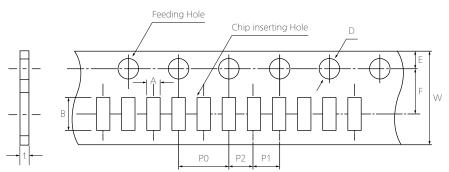

(Unit : pcs) Pitch Plastic Plastic Size mm **Chip Thickness** Plastic Туре Taping Type (inch) (mm) (mm) 7 inches reel 10 inches reel 13 inches reel 2 10K 0603 (0201) 0.3 PAPER 50K 1005 (0402) 0.5 PAPER 2 10K 50K -1608 (0603) 0.8 PAPER 4 4K 10K 15K/10K T≤0.85 PAPER 4 4K 15K/10K 10K 2012 (0805) MLCC T ≥ 1.0 EMBOSSED 4 2K 6K 10K T≤0.85 PAPER 4 4K 10K 10K 3216 (1206) T ≥ 1.0 EMBOSSED 2K 10K 4 4K T ≤ 1.6 EMBOSSED 4 2K 4K 10K 3225 (1210) T ≥ 2.0 4 1K 4K EMBOSSED 4K

Caution/Notice Component sales offices/ Manufacturing sitesd

Packaging Specifications

3 Tape Size

I . Cardboard(Paper) tape : 4mm pitch



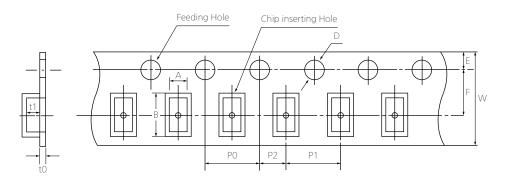
(Unit : mm)

Size mm (inch)	А	В	W	F	Е	P1	P2	P0	D	t
1608 (0603)	1.00 ±0.10	1.90 ±0.10								
2012 (0805)	1.55 ±0.10	2.30 ±0.10	8.00 ±0.30	3.50 ±0.05	1.75 ±0.10	4.00 ±0.10	2.00 ±0.05	4.00 ±0.10	φ1.50 +0.10/-0	1.1 Below
3216 (1206)	2.05 ±0.10	3.60 ±0.10								

» The A, B in the table above are based on normal dimensions. The data may be changed with the special size tolerances.

II. Cardboard(Paper) tape : 2mm pitch

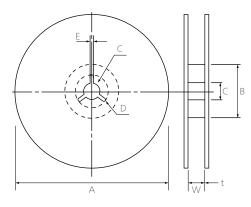
(Unit : mm)


Size mm (inch)	А	В	W	F	Е	P1	P2	PO	D	t
0402 (01005)	0.25 ±0.02	0.46 ±0.02								0.25 ±0.02
0603 (0201)	0.38 ±0.03	0.68 ±0.03	8.00	3.50	1.75	4.00	2.00	4.00	φ1.50	0.35 ±0.03
1005 (0402)	0.62 ±0.05	1.12 ±0.05	±0.30	±0.05	±0.10	±0.10	±0.05	±0.10	+0.1 /-0.03	0.60 ±0.05
0510 (0204)	0.62 0.05 /-0.10	1.12 0.05 /-0.10								0.37 ±0.03

* The A, B in the table above are based on normal dimensions. The data may be changed with the special size tolerances.

Caution/Notice Component sales offices/ Manufacturing sitesd

Packaging Specifications


III. Embossed (Plastic) tape

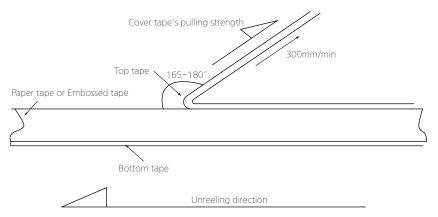
(Unit : mm)

Size mm (inch)	А	В	W	F	Е	P1	P2	PO	D	t1	t0
0402 (01005)	0.23 ±0.02	0.45 ±0.02	4.00 ±0.05	1.80 ±0.02	0.90 ±0.05	1.00 ±0.02	1.00 ±0.02	2.00 ±0.03	φ0.80 ±0.04	0.35	0.50
05025 (015008)	0.32 ±0.03	0.58 ±0.03				2.00 ±0.05			φ1.50 0.1/-0.03	Below	Below
1608 (0603)	1.05 ±0.15	1.90 ±0.15									
2012 (0805)	1.45 ±0.20	2.30 ±0.20	8.00 ±0.30	3.50 ±0.05	1.75 ±0.10	4.00	2.00 ±0.05	4.00 ±0.10	φ1.50	2.92	0.60
3216 (1206)	1.90 ±0.20	3.50 ±0.20				±0.10			0.1/-0	Below	Below
3225 (1210)	2.80 ±0.20	3.60 ±0.20									

IV. Reel Size

(Unit : mm) Tape Width В W Symbol А С D Е t φ178±2.0 ΜΙΝφ50 φ13±0.5 21±0.8 2.0±0.5 5±0.5 1.2±0.2 4mm 7"Reel 8mm φ178±2.0 ΜΙΝφ50 φ13±0.5 21±0.8 2.0±0.5 10±1.5 0.9±0.2 12mm φ178±2.0 ΜΙΝφ50 φ13±0.5 21±0.8 2.0±0.5 13±0.5 1.2±0.2 10"Reel 21±0.8 8mm φ258±2.0 ΜΙΝφ70 φ13±0.5 2.0±0.5 10±1.5 1.8±0.2 8mm φ330±2.0 ΜΙΝφ70 φ13±0.5 21±0.8 2.0±0.5 10±1.5 1.8±0.2 13"Reel MINq70 13±0.5 2.2±0.2 12mm φ330±2.0 φ13±0.5 21±0.8 2.0±0.5

Caution/Notice Component sales offices/ Manufacturing sitesd

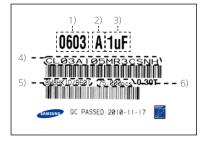

Packaging Specifications

4 Cover tape peel-off force

I . Peel-off force

10 g.f \leq peel-off force \leq 70 g.f

II. Measurement Method


 Taping Packaging design : Packaging design follows IEC 60286-3 standard. (IEC 60286-3 Packaging of components for automatic handling - parts 3)

* If the static electricity of SMT process causes any problems, please contact us.

5 BOX package

I. Packaging Label

REEL & Box Type Label includes the information as below.

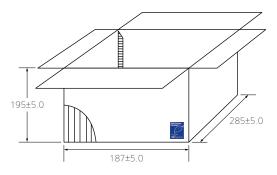
Chip size
 Temperature Characteristics
 Nominal Capacitance
 Model Name

- 5) LOT Number & Reel Number
- 6) Q'ty

II. Box Packaging

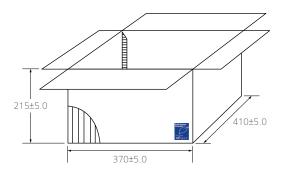
- 1) Double packaging with the paper type of inner box and outer box.
- 2) Avoid any damages during transportation by car, airplane and ship.
- 3) Remark information of contents on inner box and outer box

* If special packaging is required, please contact us.


Caution/Notice Component sales offices/ Manufacturing sitesd

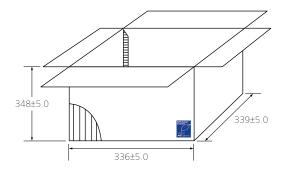
Packaging Specifications

III. 7" Box packaging



Outer Box (7" × 20 REEL)

Outer Box (7" × 60 REEL)



IV. 13" Box packaging

Inner Box (13" × 4 REEL)

Outher Box (13" × 20 REEL)

(Unit:mm)

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice

Product Characteristic data

1 Capacitance

The capacitance is the ratio of the change in an electric charge according to voltage change. Due to the fact that the capacitance may be subject to change with the measured voltage and frequency, it is highly recommended to measure the capacitance based on the following conditions.

I. Measure capacitance with voltage and frequency specified in this document.
 Regarding the voltage/frequency condition for capacitance measurement of each MLCC model, please make sure to follow a section "C. Reliability test Condition - Capacitance" in this document.

The following table shows the voltage and frequency condition according to the capacitance range.

[The voltage and frequency condition according to MLCC the capacitance range]

ass I			ClassII				
Capacitance	Frequency	Voltage	Capacitance	Frequency	Voltage		
≤1,000pF	1MHz±10%		≤10µF	1kHz±10%	1.0±0.2Vrms		
		0.5~5Vrms	>10µF	120Hz±20%	0.5±0.1Vrms		
>1,000pF	1kHz±10%		Exception	1kHz±10%	0.5±0.1Vrms		

* Capacitance shall be measured after the heat treatment of 150+0/ -10°c for 1hr, leaving at room temperature for 24±2hr. (Class II)

II. It is recommended to use measurement equipment with the ALC (Auto Level Control) option. The reason is that when capacitance or measurement frequency is high, the output voltage of measurement equipment can be lower than the setting voltage due to the equipment limitation. Note that when capacitance or measurement frequency is excessively high, the measurement equipment may show ALC off warning and provide a lower output voltage than the setting voltage even with ALC option selected. It is necessary to ensure the output voltage of measurement equipment is the same as the setting voltage before measuring capacitance.

III. Capacitance value of high dielectric constant (Class II) MLCC changes with applied AC and DC voltage. Therefore, it is necessary to take into account MLCC's AC voltage characteristics and DC-bias voltage characteristics when applying MLCC to the actual circuit.

IV. The capacitance is in compliance with the EIA RS-198-1-F-2002.

2 Tan δ (DF)

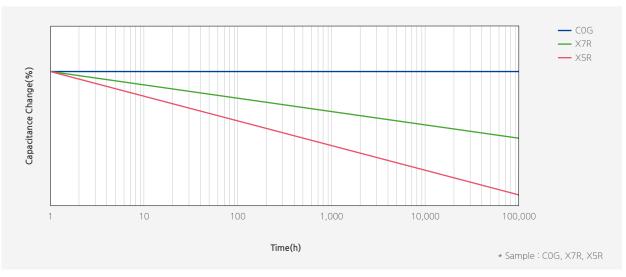
- I. An ideal MLCC's energy loss is zero, but real MLCC has dielectric loss and resistance loss of electrode. DF (Dissipation Factor) is defined as the ratio of loss energy to stored energy and typically being calculated as percentage.
- II. Quality factor (Q factor) is defined as the ratio of stored energy to loss energy. The equation can be described as 1/DF. Normally the loss characteristic of Class I MLCC is presented in Q, since the DF value is so small whereas the loss characteristic of Class II MLCC is presented in DF.
- **III.** It is recommended to use Class I MLCC for applications to require good linearity and low loss such as coupling circuit, filter circuit and time constant circuit.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice Component sales offices, Manufacturing sitesd

Caution/Notice

3 Insulation Resistance


Ceramic dielectric has a low leakage current with DC voltage due to the high insulating properties. Insulation resistance is defined as the ratio of a leakage current to DC voltage.

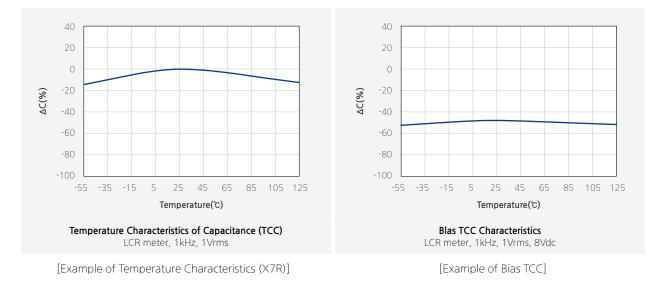
I. When applying DC voltage to MLCC, a charging current and a leakage current flow together at the initial stage of measurement. While the charging current decreases, and insulation resistance (IR) in MLCC is saturated by time. Therefore, insulation resistance shall be measured 1 minute after applying the rated voltage.

4 Capacitance Aging

The aging characteristic is that the high dielectric (Class II) MLCC decreases capacitance value over time. It is also necessary to consider the aging characteristic with voltage and temperature characteristics when Class II MLCC is used in circuitry.

- I. In general, aging causes capacitance to decrease linearly with the log of time as shown in the following graph. Please check with SEMCO for more details, since the value may vary between different models.
- II. After heat treatment (150 °C, 1hour), the capacitance decreased by aging is recovered, so aging should be considered again from the time of heat treatment.

[Example of Capacitance Aging]


Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices Manufacturing sitesd

Caution/Notice

5 Temperature Characteristics of Capacitance (TCC)

Please consider temperature characteristics of capacitance since the electrical characteristics such as capacitance changes which is caused by a change in ceramic dielectric constant by temperature.

I. It is necessary to check the values specified in section "C. Reliability test Condition-Temperature Characteristics" for the temperature and capacitance change range of MLCC.

- **II.** When selecting MLCC, it is necessary to consider the heat characteristics of a system, room temperature and TCC of MLCC, since the applied temperature may change the capacitance of MLCC.
- III. In addition, Bias TCC of MLCC should be taken into account when DC voltage is applied to MLCC.

6 Self-heating Temperature

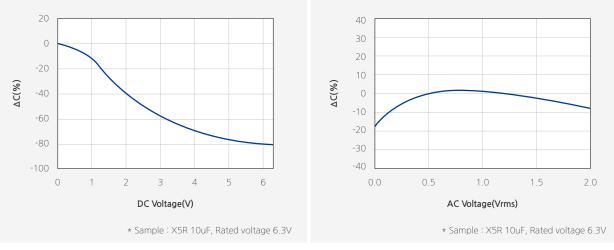
It is necessary to design the system, with considering self-heating generated by the ESR (Equivalent Series Resistance) of MLCC when AC voltage or pulse voltage is applied to MLCC.

- I. When MLCC is used in an AC voltage or pulse voltage circuit, self-heating is generated when AC or pulse current flows through MLCC. Short-circuit may be occurred by the degradation of MLCC's insulating properties.
- II. The reliability of MLCC may be affected by MLCC being used in an AC voltage or pulse voltage circuit, even the AC voltage or the pulse voltage is within the range of rated voltage. Therefore, make sure to check the following conditions.
 - 1) The surface temperature of MLCC must stay within the maximum operating temperature after AC or Pulse voltage is applied.
 - 2) The rise in increase by self-heating of MLCC must not exceed 20°C

Temperature Rise by Ripple Current

[Example of Ripple current]

≡


Part Numbering General Capacitors High Bending Strengt ESD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice
 Component sales offices, Manufacturing sitesd

Caution/Notice

7 DC & AC Voltage Characteristics

It is required to consider voltage characteristics in the circuit since the capacitance value of high dielectric constant MLCC(ClassII) is changed by applied DC & AC voltage.

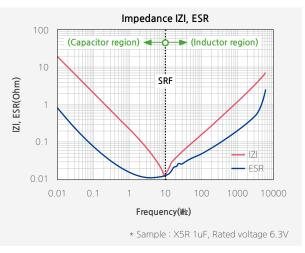
- I. Please ensure the capacitance change is within the allowed operating range of a system. In particular, when high dielectric constant type MLCC (Class II) is used in circuit with narrow allowed capacitance tolerance, a system should be designed with considering DC voltage, temperature characteristics and aging characteristics of MLCC.
- II. It is necessary to consider the AC voltage characteristics of MLCC and the AC voltage of a system, since the capacitance value of high dielectric constant type MLCC (Class II) varies with the applied AC voltage.

[Example of DC Bias characteristics]

[Example of AC voltage characteristics]

8 Impedance Characteristic

Electrical impedance (Z) of MLCC is the measurement of the opposition that MLCC presents to a current (I) when a voltage (V) is applied. It is defined as the ratio of the voltage to the current (Z=V/I). Impedance extends the concept of resistance to AC circuits and is a complex number consisting of the real part of resistance (R) and the imaginary part of reactance (X) as Z=R+jX. Therefore, it is required to design circuit with consideration of the impedance characteristics of MLCC based on the frequency (Z=R+jX)

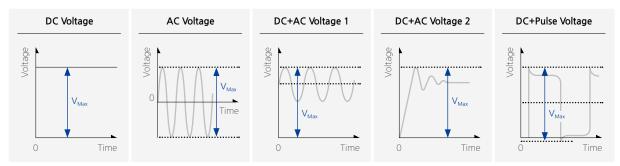

- **I** MLCC operates as a capacitor in the low frequency and its reactance (XC) decreases as frequency increases (X_C=1/j2πfC) where f is frequency and C is capacitance. The resistance (ESR; Equivalent Series Resistance) of MLCC in the low frequency mainly comes from the loss of its dielectric material.
- II. MLCC operates as an inductor in the high frequency and the inductance of MLCC is called ESL (Equivalent Series Inductance). The reactance (XL) of MLCC in the high frequency increases as frequency increases (X_L=j2πf·ESL). The resistance (ESR) of MLCC in the high frequency mainly comes from the loss of its electrode metal.

Caution/Notice Component sales office Manufacturing sitesd

Caution/Notice

- III. SRF (Self Resonant Frequency) of MLCC is the frequency where its capacitive reactance (XC) and inductive reactance (XL) cancel each other and the impedance of MLCC has only ESR at SRF.
- IV. The impedance of MLCC can be measured by a network analyzer or an impedance analyzer. When using the network analyzer, please note that the small-signal input may lead to the impedance of low capacitance caused by the AC voltage characteristic of MLCC.

[Example of Impedance characteristics]


Electrical & Mechanical Caution

1 Applied Voltage

The actual applied voltage on MLCC should not exceed the rated voltage set in the specifications.

I . Cautions by types of voltage applied to MLCC

- For DC voltage or DC+AC voltage, DC voltage or the maximum value of DC + AC voltage should not exceed the rated voltage of MLCC.
- For AC voltage or pulse voltage, the peak-to-peak value of AC voltage or pulse voltage should not exceed the rated voltage of MLCC.
- Abnormal voltage such as surge voltage, static electricity should not exceed the rated voltage of MLCC.

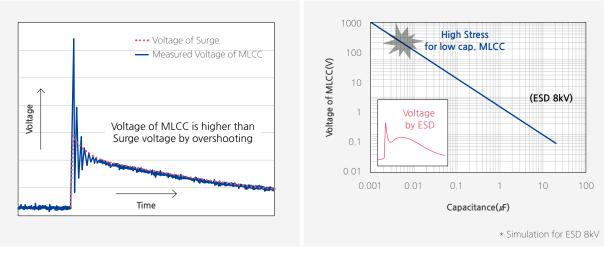
[Types of Voltage Applied to the Capacitor]

II. Effect of EOS (Electrical Overstress)

- Electrical Overstress can cause damages to MLCC, resulting in the electrical short failure caused by the dielectric breakdown in MLCC.
- Down time of MLCC is varied with the applied voltage and the room temperature and a dielectric shock caused by EOS can accelerate heating on the dielectric. Therefore, it can bring about a failure of MLCC in a market at the early stage.
- Please use caution not to apply excessive electrical overstress including spike voltage MLCC when preparing MLCC for testing or evaluating.

≡

Part Numbering General Capacitors High Bending Strengt ESD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications • Caution/Notice Component sales offices Manufacturing sitesd


Caution/Notice

(1) Surge

When the overcurrent caused by surge is applied to MLCC, the influx of current into MLCC can induce the overshooting phenomenon of voltage as shown in the graph below and result in the electrical short failure in MLCC. Therefore, it is necessary to be careful to prevent the influx of surge current into MLCC.

(2) ESD (Electrostatic Discharge)

Since the voltage of the static electricity is very high but the quantity of electric charge is small compared to the surge, ESD can cause damage to MLCC with low capacitance as shown in the following graph, whereas surge with lots of electric charge quantity can cause damages to even high capacitance MLCC.

[Example of Surge applied to MLCC]

[Example of ESD applied to MLCC]

2 Vibration

Please check the types of vibration and shock, and the status of resonance. Manage MLCC not to generate resonance and avoid any kind of impact to terminals. When MLCC is used in a vibration environment, please make sure to contact us for the situation and consider special MLCC such as Soft-term, etc.

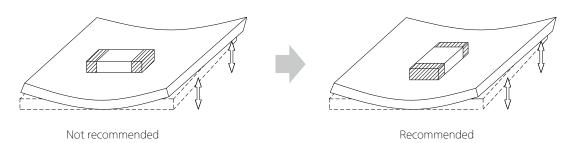
3 Shock

Mechanical stress caused by a drop may cause damages to a dielectric or a crack in MLCC. Do not use a dropped MLCC to avoid any quality and reliability deterioration. When piling up or handling printed circuit boards, do not hit MLCC with the corners of a PCB to prevent cracks or any other damages to the MLCC.

4 Piezo-electric Phenomenon

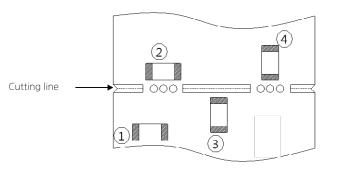
MLCC may generate a noise due to vibration at specific frequency when using the high dielectric constant MLCC (Class II) at AC or Pulse circuits. MLCC may cause a noise if MLCC is affected by any mechanical vibrations or shocks

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Caution/Notice

Process of Mounting and Soldering

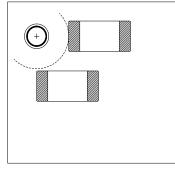
1 Mounting


I . Mounting position

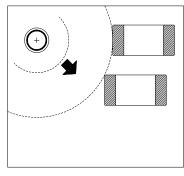
It is recommended to locate the major axis of MLCC in parallel to the direction in which the stress

II. Cautions during mounting near the cutout

Please take the following measures to effectively reduce the stress generated from the cutting of PCB. Select the mounting location shown below, since the mechanical stress is affected by a location and a direction of MLCC mounted near the cutting line.



Relative mechanical stress
 ① > ①


3>① ④>①

III. Cautions during mounting near screw

If MLCC is mounted near a screw hole, the board deflection may be occurred by screw torque. Mount MLCC as far from the screw holes as possible.

Not recommended

Recommended

=

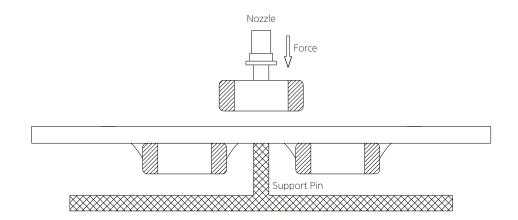
Part Numbering General Capacitors High Bending Strengt ESD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications • Caution/Notice Component sales offices Manufacturing sitesd

Caution/Notice

2 Caution before Mounting

- I. It is recommended to store and use MLCC in a reel. Do not re-use MLCC that was isolated from the reel.
- II. Check the capacitance characteristics under actual applied voltage.
- III. Check the mechanical stress when actual process and equipment is in use.
- IV. Check the rated capacitance, rated voltage and other electrical characteristics before assembly. Heat treatment must be done prior to measurement of capacitance.
- V. Check the solderability of MLCC that has passed shelf life before use.
- VI. The use of Sn-Zn based solder may deteriorate the reliability of MLCC.

3 Cautions during Mounting with Mounting (pick-and-place) Machines


I . Mounting Head Pressure

Excessive pressure may cause cracks in MLCC. It is recommended to adjust the nozzle pressure within the maximum value of 300g.f. Additional conditions must be set for both thin film and special purpose MLCC.

II. Bending Stress

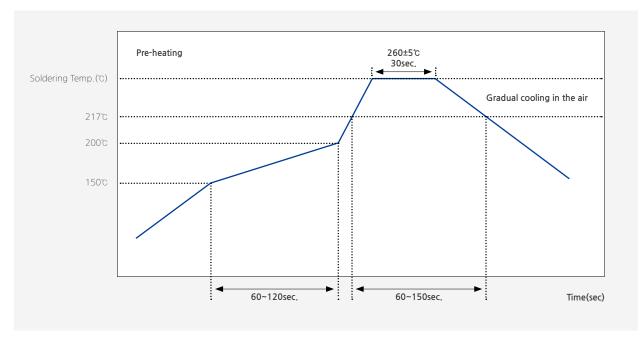
When using a two-sided substrate, it is required to mount MLCC on one side first before mounting on the other side due to the bending of the substrate caused by the mounting head.

Support the substrate as shown in the picture below when MLCC is mounted on the other side. If the substrate is not supported, bending of the substrate may cause cracks in MLCC.

III. Suction nozzle

Dust accumulated in a suction nozzle and suction mechanism can impede a smooth movement of the nozzle. This may cause cracks in MLCC due to the excessive force during mounting. If the mounting claw is worn out, it may cause cracks in MLCC due to the uneven force during positioning. A regular inspection such as maintenance, monitor and replacement for the suction nozzle and mounting claw should be conducted.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd


Caution/Notice

4 Reflow soldering

MLCC is in a direct contact with the dissolved solder during soldering, which may be exposed to potential mechanical stress caused by the sudden temperature change. Therefore, MLCC may be contaminated by the location movement and flux. For the reason, the mounting process must be closely monitored.

Μ	Method	
		Infrared rays
	Overall heating	Hot plate
Deflow coldering		VPS(Vapor phase)
Reflow soldering		Air heater
	Local heating	Laser
		Light beam

I. Reflow Profile

[Reflow Soldering Conditions]

Use caution not to exceed the peak temperature (260°c) and time (30sec) as shown. Pre-heating is necessary for all constituents including the PCB to prevent the mechanical damages on MLCC. The temperature difference between the PCB and the component surface must be kept to the minimum.

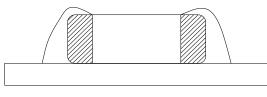
As for reflow soldering, it is recommended to keep the number of reflow soldering to less than three times. Please check with us when the number of reflow soldering needs to exceed three times. Care must be exercised especially for the ultra-small size, thin film and high capacitance MLCC as they can be affected by thermal stress more easily.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices, Manufacturing sitesd

Caution/Notice

II. Reflow temperature

The following quality problem may occur when MLCC is mounted with a lower temperature than the reflow temperature recommended by a solder manufacturer. The specified peak temperature must be maintained after taking into consideration the factors such as the placement of peripheral constituent and the reflow temperature.


- Drop in solder wettability
- Solder voids
- Potential occurrence of whisker
- Drop in adhesive strength
- Drop in self-alignment properties
- Potential occurrence of tombstones

III. Cooling

Natural cooling with air is recommended.

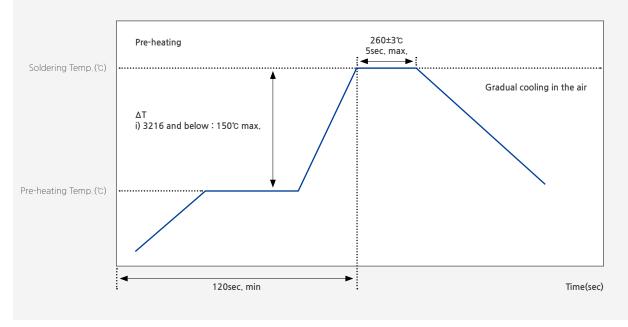
IV. Optimum solder flux for reflow soldering

- Overly the thick application of solder pastes results in an excessive solder fillet height. This makes MLCC more vulnerable to the mechanical and thermal stress from the board, which may cause cracks in MLCC.
- Too little solder paste results in a lack of the adhesive strength, which may cause MLCC to isolate from PCB
- Check if solder has been applied uniformly after soldering is completed.

Too Much Solder large stress may cause cracks

Not enough solder Weak holding force may cause bad connections or detaching of the capacitor

It is required to design a PCB with consideration of a solder land pattern and its size to apply an appropriate amount of solder to MLCC. The amount of the solder at the edge may impact directly on cracks in MLCC.



Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice
 Component sales offices

Caution/Notice

5 Flow soldering

I . Flow profile

[Flow Soldering Conditions]

Take caution not to exceed peak temperature (260°C) and time (5sec) as shown. In case of flow soldering, only 1608(0603inch), 2012(0805inch), 3216(1206inch) case size are recommended to use.

Please contact us before use the type of high capacitance and thin film MLCC for some exceptions that may be caused.

II. Caution before Flow soldering

- When a sudden heat is applied to MLCC, the mechanical rigidity of MLCC is deteriorated by the internal deformation of MLCC. Preheating all the constituents including PCB is required to prevent the mechanical damages on MLCC. The temperature difference between the solder and the surface of MLCC must be kept to the minimum.
- If the flow time is too long or the flow temperature is too high, the adhesive strength with PCB may be deteriorated by the leaching phenomenon of the outer termination, or the capacitance value may be dropped by weak adhesion between the internal termination and the outer termination.

Caution/Notice

6 Soldering Iron

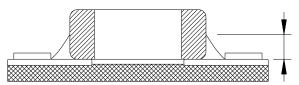
Manual soldering can pose a great risk on creating thermal cracks in MLCC. The high temperature soldering iron tip may come into a direct contact with the ceramic body of MLCC due to the carelessness of an operator. Therefore, the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

I . How to use a soldering Iron

- In order to minimize damages on MLCC, preheating MLCC and PCB is necessary. A hot plate and a hot air type preheater should be used for preheating
- Do not cool down MLCC and PCB rapidly after soldering.
- Keep the contact time between the outer termination of MLCC and the soldering iron as short as possible. Long soldering time may cause problems such as adhesion deterioration by the leaching phenomenon of the outer termination.

	sec) Cooling Time(sec)
ΔT≤130 300±10°C max ≥60, @150°C ≤4	-

 \star Control \vartriangle T in the solder iron and preheating temperature.


	Condition of Iron facilities	
Wattage	Tip diameter	Soldering time
20W max	3mm max	4sec max

* Caution - Iron tip should not contact with ceramic body directly

Lead-free solder: Sn-3.0Ag-0.5CU

III. Cautions for re-work

- Too much solder amount will increase the risk of PCB bending or cause other damages.
- Too little solder amount will result in MLCC breaking loose from the PCB due to the inadequate adhesive strength.
- Check if the solder has been applied properly and ensure the solder fillet has a proper shape.

* Soldering wire below ø0.5mm is required for soldering.

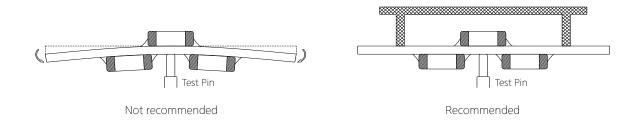
7 Cleaning

I . In general, cleaning is unnecessary if rosin flux is used.

When acidic flux is used strongly, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the performance of MLCC. This means that the cleansing solution must be carefully selected and should always be new.

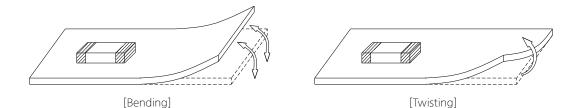
II. Cautions for cleaning

MLCC or solder joint may be cracked with the vibration of PCB, if ultrasonic vibration is too strong during cleaning. When high pressure cleaning equipment is used, test should be done for the cleaning equipment and its process before the cleaning in order to avoid damages on MLCC.


=

Part Numbering General Capacitors High Bending Strengtl FSD Protection Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices Manufacturing sitesd

Caution/Notice


8 Cautions for using electrical measuring probes

- Confirm the position of the support pin or jig when checking the electrical performance of MLCC after mounting on the PCB.
- Watch for PCB bending caused by the pressure of a test-probe or other equipment.
- If the PCB is bent by the force from the test probe, MLCC may be cracked or the solder joint may be damaged.
- Avoid PCB flexing by using the support pin on the back side of the PCB.
- Place equipment with the support pin as close to the test-probe as possible.
- Prevent shock vibrations of the board when the test-probe contacts a PCB.

9 Printed Circuit Board Cropping

- Do not apply any stress to MLCC such as bending or twisting the board after mounting MLCC on the PCB.
- The stress as shown may cause cracks in MLCC when cutting the board.
- Cracked MLCC may cause degradation to the insulation resistance, thereby causing short circuit.
- Avoid these types of stresses applied to MLCC.

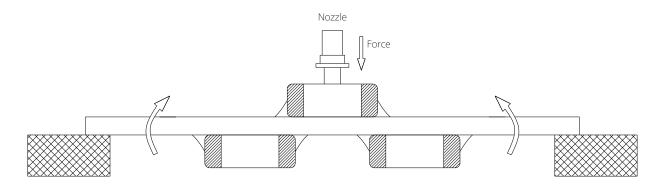
I . Cautions for cutting PCB

Check a cutting method of PCB in advance.

The high density board is separated into many individual boards after the completion of soldering. If the board is bent or deformed during separation, MLCC may be cracked. Carefully select a separation method that minimizes the deformation of the PCB.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications • Caution/Notice Component sales offices Manufacturing sitesd

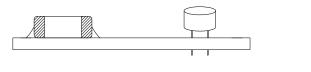
Caution/Notice

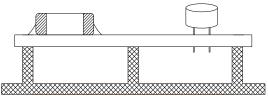

10 Assembly Handling

I . Cautions for PCB handling

Hold the edges of the board mounted with MLCC with both hands since holding with one hand may bend the board. Do not use dropped boards, which may degrade the quality of MLCC.

II. Mounting other components


Pay attention to the following conditions when mounting other components on the back side of The board after MLCC has been mounted on the front side. When the suction nozzle is placed too close to the board, board deflection stress may be applied to MLCC on the back side, resulting in cracks in MLCC. Check if proper value is set on each chip mounter for a suction location, a mounting gap and a suction gap by the thickness of components.

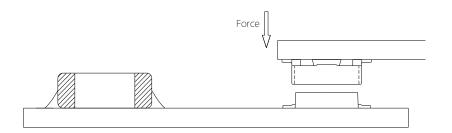


III. Board mounting components with leads

If the board is bent when inserting components (transformer, IC, etc.) into it, MLCC or solder joint may be cracked. Pay attention to the following:

- Reduce the stress on the board during insertion by increasing the size of the lead insertion hole.
- Insert components with leads into the board after fixing the board with support pins or a dedicated jig.
- Support the bottom side of the board to avoid bending the board.
- Check the status of the height of each support pin regularly when the support pins are used.

Not recommended



Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

Caution/Notice

IV. Socket and / or connector attach / detach

Since the insertion or removal from sockets and connectors may cause the board to bent, make sure that MLCC mounted on the board should not be damaged in this process.

V. Fastening screw

When attaching a shield on a board, the board may be bent during a screw tightening work.

Pay attention to the following conditions before performing the work.

- Plan the work to prevent the board from bending.
- Use a torque driver to prevent over-tightening of the screw.
- Since the board may be bent by soldering, use caution in tightening the screw.

11 Adhesive selection

Pay attention to the following if an adhesive is used to position MLCC on the board before soldering.

I. Requirements for Adhesives

- They must have enough adhesive strength to prevent MLCC from slipping or moving during the handling the board.
- They must maintain their adhesive strength when exposed to soldering temperatures.
- They should not spread when applied to the PCB.
- They should have a long pot life.
- They should hardened quickly.
- They should not corrode the board or MLCC materials.
- They should be an insulator type that does not affect the characteristic of MLCC.
- They should be non-toxic, not harmful, and particularly safe when workers touch the adhesives.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice Component sales offices/ Manufacturing sitesd

Caution/Notice

II. Caution before Applying Adhesive

Check the correct application conditions before attaching MLCC to the board with an adhesive. If the dimension of land, the type of adhesives, the amount of coating, the contact surface areas, the curing temperature, or other conditions are not appropriate, it may degrade the MLCC performance.

III. Cautions for selecting Adhesive

Depending on the type of the chosen adhesive, MLCC insulation resistance may be degraded. In addition, MLCC may be cracked by the difference in contractile stress caused by the different contraction rate between MLCC and the adhesive.

IV. Cautions for the amount of applied adhesive and curing temperature

- The inappropriate amount of the adhesive cause the weak adhesive strength, resulting in the mounting defect in MLCC.
- Excessive use of the adhesive may cause a soldering defect, loss of electrical connection, incorrect curing, or slippage of a mounting position, thereby an inflow of the adhesive onto the land section should be avoided.
- If the curing temperature is too high or the curing time is too long, the adhesive strength will be degraded. In addition, oxidation both on the outer termination (Sn) of MLCC and the surface of the board may deteriorate the solderability.

12 Flux

- I. The excessive amount of flux generates excessive flux gases which may deteriorate solderability. Therefore, apply the flux thin and evenly as a whole.
- II. Flux with a high ratio of halogen may oxidize the outer termination of MLCC, if cleaning is not done properly. Therefore, use flux with a halogen content of 0.1% max.
- III. Strong acidic flux can degrade the MLCC performance.
- IV. Check the solder quality of MLCC and the amount of remaining flux surrounding MLCC after the mounting process.

13 Coating

I . Crack caused by Coating

A crack may be caused in the MLCC due to amount of the resin and stress of thermal contraction of the resin during coating process. During the coating process, the amount of resin and the stress of thermal contraction of the resin may cause cracks in MLCC. The difference of thermal expansion coefficient between the coating, or a molding resin may cause destruction, deterioration of insulation resistance or dielectric breakdown of MLCC such as cracks or detachment, etc.

II. Recommended Coating material

- A thermal expansion coefficient should be as close to that of MLCC as possible.
- A silicone resin can be used as an under-coating to buffer the stress.
- The resin should have a minimum curing contraction rate.
- The resin should have a minimum sensitivity (ex. Epoxy resin).
- The insulation resistance of MLCC can be deteriorated if a high hygroscopic property resin is used in a high humidity condition.
- Do not use strong acid substances due to the fact that coating materials inducing a family of halogen substances and organic acid may corrode MLCC.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices/ Manufacturing sitesd

Caution/Notice

Design

1 Circuit design

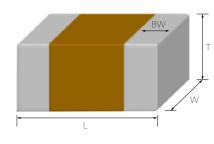
When the board is dropped or bent, MLCC mounted on the board may be short-circuited by the drop in insulation resistance. Therefore, it is required to install safety equipment such as a fuse to prevent additional accidents when MLCC is short-circuited, otherwise, electric short and fire may occur. This product is not a safety guaranteed product.

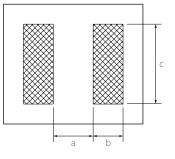
2 PCB Design

I. Unlike lead type components, SMD type components that are designed to be mounted directly on the board are fragile to the stress. In addition, they are more sensitive to mechanical and thermal stress than lead type components.

II. MLCC crack by PCB material type

A great difference of the thermal expansion coefficient between PCB and MLCC causes thermal expansion and contraction, resulting in cracks in MLCC. Even though MLCC is mounted on a board with a fluorine resin or on a single-layered glass epoxy, cracks in MLCC may occur.


3 Design system evaluation


- I. Evaluate the actual design with MLCC to make sure there is no functional issue or violation of specifications of the finished goods.
- **II.** Please note that the capacitance may differ based on the operating condition of the actual system since Class 2 MLCC capacitance varies with applied voltage and temperature.
- III. Surge resistance must be evaluated since the excessive surge caused by the inductance of the actual system may apply to MLCC.

IV. Note the actual MLCC size and the termination shape.

4 Land dimension

The recommended land dimension is determined by evaluating the actual SET and a board.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice

Caution/Notice

Reflow Footprint

Chip Size (mm)	Chip Tol. (mm)	a (mm)	b (mm)	c (mm)	(a+2b) min	(a+2b) max
0402	± 0.05	0.23~0.29	0.32~0.38	0.32~0.38	0.87	1.05
1005	± 0.05	0.36~0.44	0.49~0.57	0.51~0.59	1.34	1.58
1005	± 0.20	0.42~0.50	0.53~0.61	0.66~0.74	1.48	1.72
1609	± 0.10	0.63~0.73	0.71~0.81	0.80~0.90	2.05	2.35
1608	± 0.20	0.67~0.77	0.74~0.84	0.95~1.05	2.15	2.45
	±0.10	0.79~0.89	0.88~0.98	1.25~1.35	2.55	2.85
2012	±0.15	0.81~0.91	0.90~1.00	1.30~1.40	2.61	2.91
2012	±0.20	0.83~0.93	0.91~1.01	1.35~1.45	2.65	2.95
	±0.25	0.85~0.95	0.93~1.03	1.40~1.50	2.71	3.01
2216	±0.20	1.64~1.76	1.19~1.31	1.74~1.86	4.02	4.38
3216	±0.30	1.69~1.81	1.22~1.34	1.84~1.96	4.13	4.49
2225	±0.20	1.64~1.76	1.29~1.41	2.64~2.76	4.22	4.58
3225	±0.30	1.69~1.81	1.32~1.44	2.74~2.86	4.33	4.69

Flow Footprint

Chip Size (mm)	Chip Tol. (mm)	a (mm)	b (mm)	c (mm)	(a+2b) min	(a+2b) max
1608	-	0.60~1.00	0.60~0.80	0.60~0.80	1.8	2.6
2012	-	1.00~1.20	0.80~1.20	0.80~1.20	2.6	3.6
3216	-	2.00~2.40	1.00~1.20	1.00~1.40	4	4.8

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice

Others

1 Storage environment

I. Recommendation for temperature/humidity

Even taping and packaging materials are designed to endure a long-term storage, they should be stored with a temperature of $0 \sim 40^{\circ}$ C and an RH of $0 \sim 70\%$ otherwise, too high temperatures or humidity may deteriorate the quality of the product rapidly.

As oxidization is accelerated when relative humidity is above 70%RH, the lower the humidity is, the better the solderability is. As the temperature difference may cause dew condensation during the storage of the product, it is a must to maintain a temperature control environment

II. Shelf Life

An allowable storage period should be within 6 months from the outgoing date of delivery in consideration of solderability. As for products in storage over 6 months, please check solderability before use.

2 Caution for corrosive environment

As corrosive gases may deteriorate the solderability of MLCC outer termination, it is a must to store MLCC in an environment without gases. MLCC that is exposed to corrosive gases may cause its quality issues due to the corrosion of plating layers and the penetration of moisture.

3 Equipment in operation

- I. Do not touch MLCC directly with bare hands to prevent an electric shock or damage.
- II. The termination of MLCC shall not be contacted with a conductive object (short -circuit). Do not expose MLCC to conductive liquid containing acidic or alkaline material.

III. Do not use the equipment in the following conditions.

- (1) Exposure to water or oil
- (2) Exposure to direct sunlight
- (3) Exposure to Ozone or ultra-violet radiation.
- (4) Exposure to corrosive gas (e.g. hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas)
- (5) Exposure to vibration or mechanical shock exceeding specified limit
- (6) Exposure to high humidity
- **IV.** If the equipment starts generating any smoke, fire or smell, immediately switch it off or unplug from the power source. If the equipment is not switched off or unplugged, serious damage may occur due to the continuous power supply. Please be careful with the high temperature in this condition.

4 Waste treatment

In case of scrapping MLCC, it is incinerated or buried by a licensed industrial waste company. When scrapping MLCC, it is recommended to incinerate or bury the scrappage by a licensed industrial waste company.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications Caution/Notice Component sales offices, Manufacturing sitesd

Caution/Notice

5 Operating temperature

The operating temperature limit is determined by the specification of each models.

- I. Do not use MLCC over the maximum operating temperature. Pay attention to equipment's temperature distribution and the seasonal fluctuation of ambient temperature.
- II. The surface temperature of MLCC cannot exceed the maximum operating temperature including self-heating effects.

6 Transportation

The performance of MLCC may be affected by transportation conditions.

- I. MLCC shall be protected from excessive temperature, humidity and a mechanical force during transportation. During transportation, the cartons shall not be deformed and the inner packaging shall be protected from excessive external forces.
- II. Do not apply excessive vibrations, shocks or excessive forces to MLCC.
 - If excessive mechanical shock or stress are applied, MLCC's ceramic body may crack.
 - When the surface of MLCC is hit with the sharp edge of an air driver, a soldering iron, or a tweezer, etc, MLCC may crack or become short-circuited.
- III. MLCC may crack and become non-functional due to the excessive shocks or dropping during transportation.

7 Notice

Some special products are excluded from this document. Please be advised that this is a standard product specification for a reference only. We may change, modify or discontinue the product specifications without notice at any time. So, you need to approve the product specifications before placing an order. Should you have any question regarding the product specifications, please contact our sales personnel or application engineers.

Fail Safe Application Guide Reliability Test Conditions Packaging Specifications

Caution/Notice
Component sales offices/
Manufacturing sitesd

Component sales offices

Head Office

150, Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea **Tel** +82-31-210-5114 (Main Number)

America

San Jose

Samsung Electro Mechanics America Inc. (HQ) 3655 N 1st street, San Jose CA 95134, U.S.A. **Tel** +1-408-544-5454

San Diego

Samsung Electro Mechanics America Inc.(San Diego office) 5405 Morehouse Drive, Suite #220 San Diego CA 92121 USA **Tel** +1-858-263-3024

Phoenix

Samsung Electro Mechanics America Inc.(Phoenix Office) 4505 E Chandler Blvd suite #105, Phoenix, AZ, 85048, U.S.A. **Tel** +1-480-592-0184

Detroit

Samsung Electro Mechanics America Inc. (Detroit Office) 4121 N Atlantic Blvd Auburn Hills Michigan 48326, U.S.A

Phoenix

Samsung Electro Mechanics America Inc. (Phoenix Office) 4505 East Chandler Blvd Suite 105 Phoenix, AZ 85048 USA **Tel** +1-480-592-0184

Europe

Frankfurt

Samsung Electro-Mechanics GmbH. (HQ) Koelner Str. 12, 65760 Eschborn, Germany. Tel +49-6196-66-3300

Munich

Samsung Electro-Mechanics GmbH. (Munich Office) Reichenbachstrasse 2, 85737 Ismaning, Germany. **Tel** +49-6196-66-7237

Stuttgart

Samsung Electro-Mechanics GmbH. (Stuttgart Office) Leitzstrasse 45, 70469 Stuttgart, Germany. Tel +49-7114-906-6281

Helsinki

Samsung Electro-Mechanics GmbH. (Helsinki Office) Keilaranta 1, 02150 Espoo, Finland. **Tel** +35-898-53-1132

Asia

Shenzhen

Samsung Electro-Mechanics (ShenZhen) Co.,Ltd.(HQ) 14F, Tower A, SCC Building, Junction of Houhai Blvd. and Haide 1st Rd., Nanshan Dist., Shenzhen City, China. **Tel** +86-755-8608-5574

Shanghai

Samsung Electro-Mechanics Co.,Ltd. (Shanghai Branch) 13F Room 1301-1302, Tower B, SOHO Zhongshan Building, No.1065 Zhongshan West Rd., Changning Dist., Shanghai City, China. **Tel** +86-21-2501-5803

Beijing

Samsung Electro-Mechanics Co.,Ltd. (Beijing Branch) 21F 2101-3, Samsung Tower, Building 1,Yard31, Jinghui Street,Chaoyang Dist, Beijing City, China. **Tel** +86-10-5092-8701

Taipei

Samsung Electro-Mechanics Co.,Ltd. (Taipei Branch) 9F-1, No.399 Rueykuang Rd., Neihu Dist., Taipei City, Taiwan. **Tel** +886-2-2656-8351

Singapore

Samsung Electro-Mechanics Private Limited(HQ) 3 Church Street Samsung Hub #23-01 Singapore. **Tel** +65-6933-2600

Penang

Samsung Electro-Mechanics Private Limited (Penang Office) Unit 9-06, Menara Boustead, 39 Jalan Sultan Ahmad Shah, 10050, Georgetown, Penang, Malaysia. **Tel** +60-4-818-3912

New Delhi

Samsung Electro-Mechanics Private Limited(New Delhi Office) G-4, Ground Floor Salcon Aurum Building, Jasola New Delhi-110025, India. **Tel** +91-956-005-0310

Tokyo

Samsung Electro-Mechanics Japan Co., Ltd(HQ) Shinagawa Grand Central Tower 9F, 2-16-4, Kounan, Minato-ku, Tokyo, Japan. **Tel** +81-3-6369-6461

Manufacturing sites

Suwon Plant (HQ)

150, Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea **Tel** +82-31-210-5114 (Main Number) Busan Plant 333, Noksansaneopjung-ro, Gangseo-gu, Busan, Republic of Korea Tel +82-31-210-5114 (Main Number)

China Tianjin

80, Xiaqing road, TEDA west district, Tianjin, China **Tel** +86-6686-3333 (1120, 3620)

www.samsungsem.com