1.7Ω, Low On Resistance, +12 V, +5 V, +3 V, $\pm 5 \mathrm{~V}$, SPST Switches

DESCRIPTION

The DG9421E and DG9422E are monolithic single-pole-single-throw (SPST) analog switches. The DG9421E has a normally closed function. The DG9422E has a normally open function.
Processed with high density BiCMOS technology, the parts achieve low resistance, fast switching speed, low power dissipation, high -3 dB bandwidth, and low voltage logic control threshold.
The DG9421E and DG9422E operate on single and dual supplies. Single supply voltage ranges from +3 V to +16 V while dual supply operation is recommended with $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$. Each switch conducts equally well in both direction when on, and blocks input voltages up to the supply levels when off.
The low and flat on resistance over the full input signal voltage range brings excellent linearity, reduces insertion loss and signal distortion, makes them ideal for data acquisition and programmable gain control applications. These switch characters also make them ideal fit for audio signal switch and reed relay replacement.
Operation temperature is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The DG9421E and DG9422E are available in 6 lead TSSOP packages.

BENEFITS

- Wide operation voltage range
- Low signal errors and distortion
- Fast switching time
- Simple interfacing

FEATURES

- 3 V to 16 V single supply or ± 3 thru $\pm 8 \mathrm{~V}$ dual supply operation
- Low on resistance: 1.7Ω typical at 12 V
- 2.4 V logic compatible for control
- Bi-directional rail to rail signal switching

- Fast switching speed
- High bandwidth: 161 MHz
- Control logic input can be over V+
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Automatic test equipment
- Data acquisition systems
- Meters and instruments
- Medical and healthcare systems
- Communication systems
- Audio and video signal routing
- Relay replacement
- Battery powered systems
- Computer peripherals
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE

LOGIC	DG9421E	DG9422E
0	On	Off
1	Off	On

Notes

- Logic " 0 " $\leq 0.8 \mathrm{~V}$
- Logic " 1 " $\geq 2.4 \mathrm{~V}$
- Switches shown for logic "0" input

ORDERING INFORMATION		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6-$ pin TSOP	DG9421EDV-T1-GE3
	DG9422EDV-T1-GE3	

DG9421E, DG9422E

ABSOLUTE MAXIMUM RATINGS			
PARAMETER		LIMIT	UNIT
V+ reference to V-		-0.3 to +18	V
IN		-0.3 to +18	
V+ reference to GND		-0.3 to +18	
GND reference to V-		-0.3 to +18	
COM, $\mathrm{NC}, \mathrm{NO}^{\text {a }}$		$(\mathrm{V}-)-0.3 \mathrm{~V} \text { to }(\mathrm{V}+)+0.3 \mathrm{~V}$ or 50 mA , whichever occurs first	-
Continuous current (any terminal)		50	mA
Peak current, NO, NC or COM (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		100	
Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
Power dissipation (packages) ${ }^{\text {b }}$	6-pin TSOP ${ }^{\text {c }}$	570	mW
ESD / HBM	JS-001	2000	V
ESD / CDM	JS-002	2000	
Latch up	per JEDEC78	300	mA

Notes

a. Signals on NO, NC, COM exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS ${ }^{\text {a }}$ (Single supply 12 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}}$	TEMP. ${ }^{\text {b }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {a }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0	-	12	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V} / 9 \mathrm{~V} \end{gathered}$	Room	-	1.7	2.7	Ω
			Full	-	-	3.2	
Switch off leakage current 9	$1_{\text {NO/NC(off) }}$	$\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=11 \mathrm{~V} / 1 \mathrm{~V}$	Room	-1	± 0.004	1	nA
			Full	-10	± 1.06	10	
	$\mathrm{I}_{\text {com(off) }}$		Room	-1	± 0.004	1	
			Full	-10	± 0.23	10	
Channel-on leakage current 9	$\mathrm{I}_{\text {Com(on) }}$	$\mathrm{V}_{\mathrm{NO} / \mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=11 \mathrm{~V} / 1 \mathrm{~V}$	Room	-1	± 0.002	1	
			Full	-10	± 0.454	10	
Digital Control							
Input current, $\mathrm{V}_{\text {IN }}$ low		$\mathrm{V}_{\text {IN }}$ under test $=0.8 \mathrm{~V}$	Full	-1	0.001	1	$\mu \mathrm{A}$
Input current, $\mathrm{V}_{\text {IN }}$ high	I_{H}	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$	Full	-1	0.001	1	
Dynamic Characteristics							
Turn-on time ${ }^{\text {e }}$	ton	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	Room	-	28	36	ns
			Full	-	-	41	
Turn-off time ${ }^{\text {e }}$	toff		Room	-	12	20	
			Full	-	-	22	
Charge injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	19	-	pC
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room	-	161	-	MHz
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-	-58	-	dB
Source off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	34	-	pF
Drain off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(off) }}$		Room	-	36	-	
Channel on capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {COM(on) }}$		Room	-	68	-	
Power Supplies							
Positive supply current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 12 V	Room	-	0.001	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current	I-		Room	-1	-0.001	-	
			Full	-5	-	-	
Ground current	$\mathrm{I}_{\mathrm{GND}}$		Room	-1	-0.001	-	
			Full	-5	-	-	

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$	TEMP. ${ }^{\text {b }}$	LIMITS$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-5	-	5	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room	-	1.9	2.9	Ω
			Full	-	-	3.4	
Switch off leakage current 9	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=\mp 4.5 \mathrm{~V} \end{gathered}$	Room	-1	± 0.004	1	nA
			Full	-10	± 1.012	10	
	$\mathrm{I}_{\text {com(off) }}$		Room	-1	± 0.003	1	
			Full	-10	± 0.188	10	
Channel-on leakage current 9	$\mathrm{I}_{\text {Com(on) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room	-1	± 0.002	1	
			Full	-10	± 0.425	10	
Digital Control							
Input current, $\mathrm{V}_{\text {IN }}$ low ${ }^{\text {e }}$	1 IL	$\mathrm{V}_{\text {IN }}$ under test $=0.8 \mathrm{~V}$	Full	-1	0.001	1	$\mu \mathrm{A}$
Input current, $\mathrm{V}_{\text {IN }}$ high ${ }^{\text {e }}$	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$	Full	-1	0.001	1	
Dynamic Characteristics							
Turn-on time	t_{on}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}= \pm 3.5 \mathrm{~V}$	Room	-	39	54	ns
			Full	-	-	62	
Turn-off time	toff		Room	-	28	33	
			Full	-	-	42	
Charge injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	57	-	pC
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room	-	179	-	MHz
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-	-58	-	dB
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	34	-	pF
Drain off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(off) }}$		Room	-	36	-	
Channel on capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(on) }}$		Room	-	68	-	
Power Supplies							
Positive supply current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	Room	-	0.001	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current ${ }^{\text {e }}$	I-		Room	-1	-0.001	-	
			Full	-5	-	-	
Ground current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Room	-1	-0.001	-	
			Full	-5	-	-	

DG9421E, DG9422E

SPECIFICATIONS ${ }^{\text {a }}$ (Single supply 5 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}}$	TEMP. ${ }^{\text {b }}$	$\begin{aligned} & \text { LIMITS } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0	-	5	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=5 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{gathered}$	Room	-	3.04	5.4	Ω
			Full	-	-	7	
Dynamic Characteristics							
Turn-on time ${ }^{\text {e }}$	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{S}=3.5 \mathrm{~V}$	Room	-	57	82	ns
			Hot	-	-	95	
Turn-off time ${ }^{\text {e }}$	toff		Room	-	24	34	
			Hot	-	-	40	
Charge injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	12	-	pC
Power Supplies							
Positive supply current ${ }^{\text {e }}$	$1+$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	Room	-	0.001	1	$\mu \mathrm{A}$
			Hot	-	-	5	
Negative supply current ${ }^{\text {e }}$	I-		Room	-1	-0.001	-	
			Hot	-5	-	-	
Ground current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Room	-1	-0.001	-	
			Hot	-5	-	-	

DG9421E, DG9422E

SPECIFICATIONS ${ }^{\text {a }}$ (Single supply 3 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.4 \mathrm{~V}^{\mathrm{f}}$	TEMP. ${ }^{\text {b }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$	$\begin{gathered} \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V} \end{gathered}$	Full	0	-	3	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		Room	-	7.3	11.5	Ω
			Full	-	-	18	
Switch off leakage current 9	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC}(\text { (ff) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=1 \mathrm{~V}, 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V}, 1 \mathrm{~V} \end{gathered}$	Room	-1	± 0.003	1	nA
			Full	-10	± 0.9	10	
	$\mathrm{I}_{\text {Com(off) }}$		Room	-1	± 0.0008	1	
			Full	-10	± 0.042	10	
Channel-on leakage current 9	$\mathrm{I}_{\text {COM(on) }}$	$\begin{aligned} \mathrm{V}+ & =3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}} & =\mathrm{V}_{\mathrm{NO} / \mathrm{NC}}=1 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	Room	-1	± 0.0014	1	
			Full	-10	± 0.41	10	
Digital Control							
Input current, $\mathrm{V}_{\text {IN }}$ low ${ }^{\text {e }}$	$I_{\text {IL }}$	V_{1} U under test $=0.4 \mathrm{~V}$	Full	-1	0.001	1	$\mu \mathrm{A}$
Input current, $\mathrm{V}_{\text {IN }}$ high ${ }^{\text {e }}$	I_{H}	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$	Full	-1	0.001	1	
Dynamic Characteristics							
Turn-on time	t_{on}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	Room	-	124	215	ns
			Full	-	-	222	
Turn-off time	toff		Room	-	58	101	
			Full	-	-	106	
Charge injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	6	-	pC
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-	-58	-	dB
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	36	-	pF
Drain off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {COM(fff) }}$		Room	-	38	-	
Channel on capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {COM(on) }}$		Room	-	70	-	

Notes

a. Refer to PROCESS OPTION FLOWCHART
b. Room $=25^{\circ} \mathrm{C}$, full $=$ as determined by the operating temperature suffix
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
e. Guaranteed by design, not subject to production test
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function
g. Leakage parameters are guaranteed by worst case test conditions and not subject to test

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

RoN $_{\text {vs. }} \mathbf{V}_{\text {Com }}$ and Single Supply Voltage

Ron vs. V $\mathbf{C o m}_{\text {and Dual Supply Voltage }}$

$\mathbf{R}_{\mathrm{DS}(\text { on })}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\mathrm{DS}(o n)}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\mathrm{DS}(o n)}$ vs. Analog Voltage and Temperature

$R_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Supply Current vs. Temperature

Insertion Loss, Off-Isolation vs. Frequency

Insertion Loss, Off-Isolation vs. Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Input Switching Frequency

Supply Current vs. Input Switching Frequency

Switching Time vs. Temperature

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Supply Current vs. Enable Input Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Charge Injection vs. Analog Voltage

SCHEMATIC DIAGRAM (typical channel)

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \frac{R_{L}}{R_{L}+r_{D S(o n)}}
$$

Note
${ }^{\text {(1) }}$ Logic input waveform is inverted for switches that have the opposite logic sense control

Fig. 1 - Switching Time

Fig. 2 - Charge Injection

Fig. 3 - Off Isolation

Fig. 4 - Source/Drain Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75411.

TSOP: 5/6-LEAD
JEDEC Part Number: MO-193C

Dim	MILLIMETERS			INCHES		
	Min	Nom	Max	Min	Nom	Max
A	0.91	-	1.10	0.036	-	0.043
A_{1}	0.01	-	0.10	0.0004	-	0.004
A_{2}	0.90	-	1.00	0.035	0.038	0.039
b	0.30	0.32	0.45	0.012	0.013	0.018
c	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	2.70	2.85	2.98	0.106	0.112	0.117
E_{1}	1.55	1.65	1.70	0.061	0.065	0.067
e	0.95 BSC			0.0374 BSC		
e_{1}	1.80	1.90	2.00	0.071	0.075	0.079
L	0.32	-	0.50	0.012	-	0.020
L_{1}	0.60 Ref			0.024 Ref		
L_{2}	0.25 BSC			0.010 BSC		
R	0.10	-	-	0.004	-	-
θ	0°	4°	8°	0°	4°	8°
θ_{1}	7° Nom			$7^{\circ} \mathrm{Nom}$		
ECN: C-06593-Rev. I, 18-Dec-06 DWG: 5540						

Recommended Land Pattern For TSOP-5L / TSOP-6L

TSOP 5L
TSOP 6L

Note

- All dimensions are in inches (millimeter)

ECN: C22-0860-Rev. B, 24-Oct-2022

DWG: 3010

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

