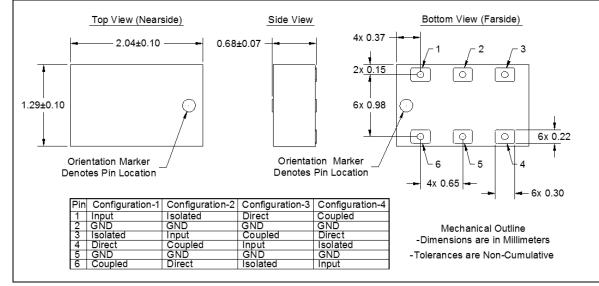


Ultra Low Profile 080 3 dB, 90° Hybrid Couple

Description:

The C2327J5003AHF is one of the world's smallest and highest pe. The C2327J5003AHF is a low cost, low profile subminiature high performance 3 dB coupler in an easy to use surface mount package. It is designed for WiMax, WiBro, WiFi, ISM, and EUMTS applications. The C2327J5003AHF is ideal for balanced power and low noise amplifiers, plus signal distribution and other applications where low insertion loss and tight amplitude and phase balance are required. The C2327J5003AHF is available on tape and reel for pick and place high volume manufacturing.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability. All parts have been subjected to rigorous qualification testing and units are 100% RF tested.

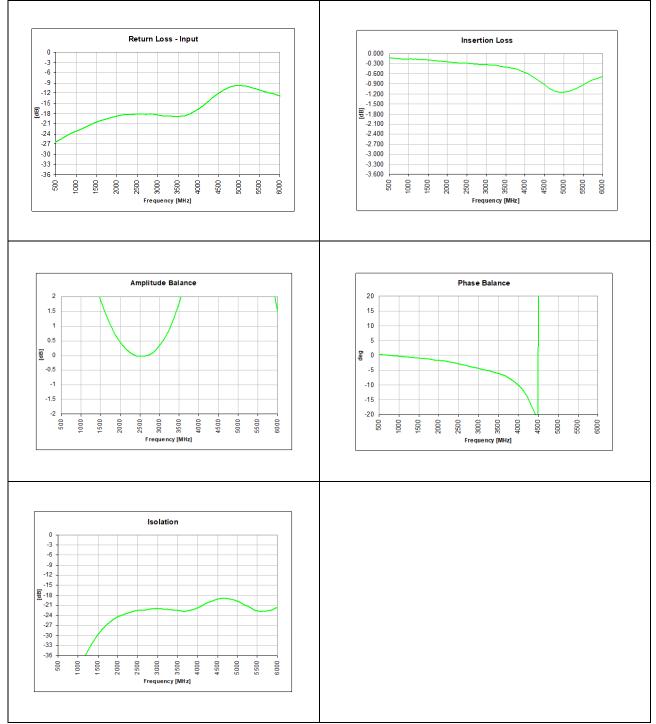

Detailed Electrical Specifications:

Specifications subject to change without notice.

position outjeet to onalige without heat		ROOM (25°C)			
Features:	Parameter	Min.	Тур.	Мах	Unit
• 2300 – 2700 MHz	Frequency	2300		2700	MHz
 0.7mm Height Profile WiMax, WiBro, WiFi & ISM 	Port Impedance		50		Ω
Low Insertion Loss	Return Loss	15	18		dB
High Isolation	Isolation	18	22		dB
Surface Mountable	Insertion Loss*		0.3	0.4	dB
Tape & Reel	Amplitude Balance		0.1	0.9	dB
Non-conductive SurfaceRoHS Compliant	Phase Balance (relative to 90°)		4	8	Degrees
 Halogen-free 	Power Handling @85°C			4	Watts
	Power Handling @105°C			2.4	Watts
	Operating Temperature	-55		+140	°C

* Insertion Loss stated at room temperature. Values above are for the case with shunt capacitor across differential lines.

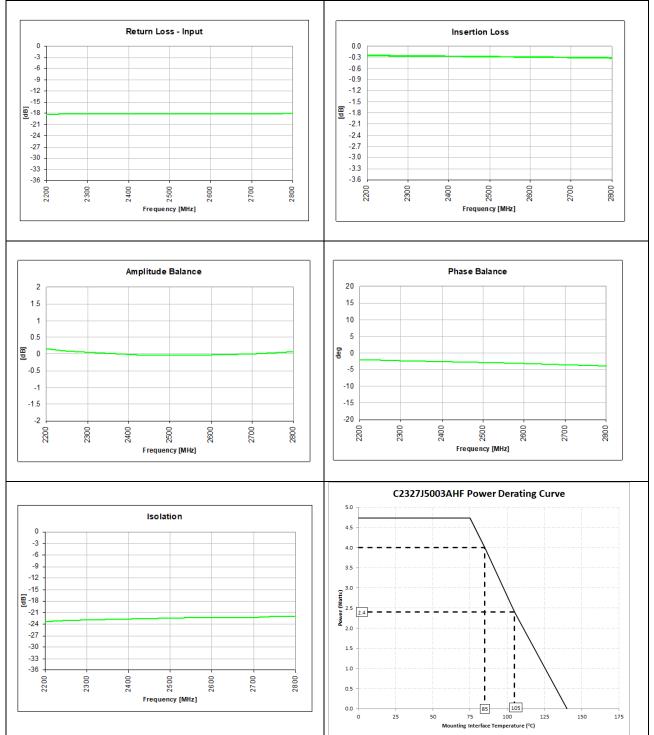
Outline Drawing:



WWW.TTM.COM

FOLLOW US f in to C f #TTM #TTMTECH #INSPIRINGINNOVATION

Typical Broadband Performance: 500 MHz. to 6000 MHz.



WWW.TTM.COM

FOLLOW US f in the ID I for the Imperiation of the

Typical Broadband Performance: 2200 MHz. to 2800 MHz.

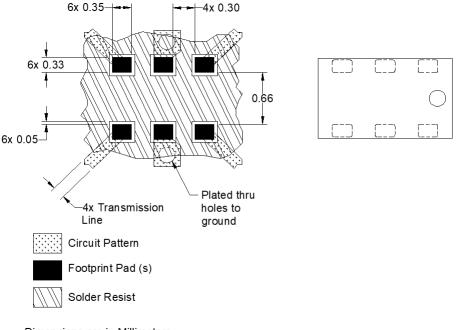
WWW.TTM.COM

FOLLOW US f in the ID I for the Imperiation of the

Definition of Measured Specifications

*100% RF test is performed per spec definition for pin configuration 1 and port 1 (input port) is connected to pin1, port 2 (isolated port) is connected to pin 3, port 3 (direct port) is connected to pin 4 and port 4 (isolated) is connected to pin 6.

Parameter	Definition	Mathematical Representation <i>i, j, k, m</i> is denoted as the port index of input, isolated, direct and coupled port for specific pin configuration shown in the table		
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	$RL = 20log(S_{ii})$		
Isolation	The input power divided by the sum of the power at the two output ports.	20log <i>S</i> _{ji}		
Insertion Loss	The input power divided by the sum of the power at the two output ports.	$10\log_{10}(S_{\rm mi} ^2 + S_{\rm ki} ^2)$		
Amplitude Balance	The difference in power between the two outputs.	$AB = 20\log S_{ki}/S_{mi} $		
Phase Balance	The difference in phase angle between the two output ports.	$\angle S_{ki} - \angle S_{mi} + 90^{\circ}$		

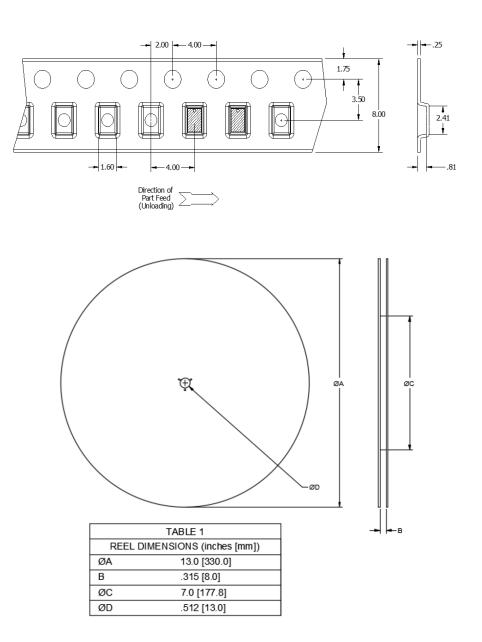


Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from organic PTFE based composites which possess excellent electrical and mechanical stability. Xinger components are compliant to a variety of ROHS and Green standards and ready for Pb-free soldering processes. Pads are Gold plated with a Nickel barrier.

An example of the PCB footprint used in the testing of these parts is shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.


Dimensions are in Millimeters Mounting Footprint

WWW.TTM.COM

Packaging and Ordering Information:

Parts are available in reel and are packaged per EIA 481-D. Parts are oriented in tape and reel as shown below. Minimum order quantities are 10,000 per reel.

Contact us: rf&s_support@ttm.com

Inspiring Innovation

WWW.TTM.COM