

CGHV37400F

400 W, 3.5 - 3.7 GHz, 50-Ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

Wolfspeed's CGHV37400F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV37400F ideal for 3.5 - 3.7 GHz S-Band radar amplifier applications. The transistor is matched to 50-ohms on the input and 50-ohms on the output. The CGHV35400 is based on Wolfspeed's high power density 50 V, 0.4 µm GaN-on-Silicon Carbide (SiC) foundry process. The transistor is supplied in a ceramic metal flange package, type 440217.

Package Type: 440217 PN: CGHV37400F

Typical Performance Over 3.5-3.7 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	3.5 GHz	3.6 GHz	3.7 GHz	Units
Output Power	555	560	555	W
Gain	11.4	11.5	11.4	dB
Drain Efficiency	55	555	55	%

Note: Measured in the CGHV37400F-AMP application circuit, under 100 μ s pulse width, 10% duty cycle, P_{IN} = 46 dBm

Features

- 3.3 3.8 GHz Operation
- 525 W Typical Output Power
- 11.5 dB Power Gain
- 55% Typical Drain Efficiency
- 50 Ohm Internally Matched
- <0.3 dB Pulsed Amplitude Droop

Large Signal Models Available for ADS and MWO

Rev. 2.0, 2022-8-23

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	100	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V _{DSS}	150	v	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	80	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	24	А	25 C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	R _{θJC}	0.22	°C/W	100 μsec, 10%, 85°C , P _{DISS} = 418 W
Case Operating Temperature	Tc	-40, +125	°C	

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ ($T_c = 25^{\circ}C$)						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3		$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 83.6 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	V _{DC}	V _{DS} = 50 V, I _D = 1.0 A
Saturated Drain Current ²	I _{DS}	54.3	77.7	-	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	125	_	_	V _{DC}	$V_{GS} = -8 V, I_{D} = 83.6 mA$
RF Characteristics ³ ($T_c = 25^{\circ}C$,	$F_0 = 3.5 - 3.$	7 GHz unl	ess other	wise note	d)	
Output Power at 3.5 GHz	Pouti	400	525	-		
Output Power at 3.7 GHz	P _{OUT2}	400	525	_	- w	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{\text{IN}} = 46 \text{ dBm}$
Drain Efficiency at 3.5 GHz	DE1	50		_	0/	
Drain Efficiency at 3.7 GHz	DE ₂	50	55	_	%	
Small Signal Gain	S21	11.75	14	-		
Input Return Loss	S11	_	-9			$V_{DD} = 50 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -10 \text{ dBm}$
Output Return Loss	S22	_	-6	-4	dB	
Amplitude Droop	D	_	-0.3	-	1	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}$
Output Stress Match ^₄	VSWR	_	5:1	_	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 1000 mA, P_{IN} = 46 dBm Pulsed

Notes:

¹ Measured on wafer prior to packaging

² Scaled from PCM data

 $^3\,$ Measured in CGHV37400F-AMP. Pulse Width = 100 $\mu s,$ Duty Cycle = 10%

⁴ The device is not recommended for 5:1 VSWR applications below 3.3 GHz

Rev. 2.0, 2022-8-23

Typical Performance

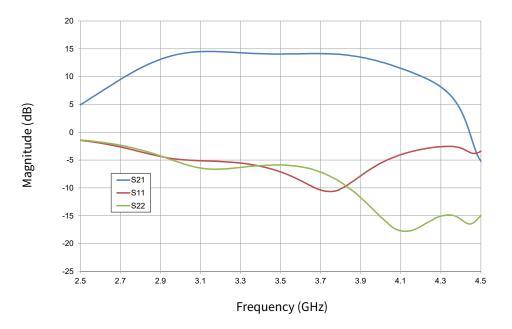


Figure 1. Typical Small Signal Gain and Return Losses vs Frequency V_{DD} = 50 V, I_{DQ} = 1.0 A

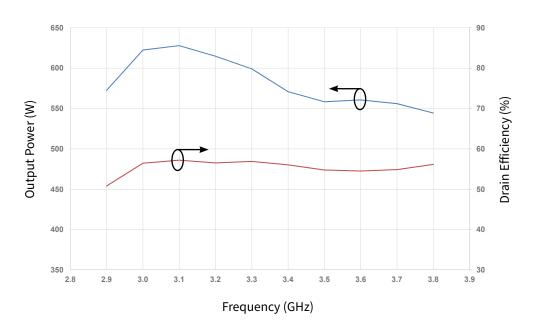
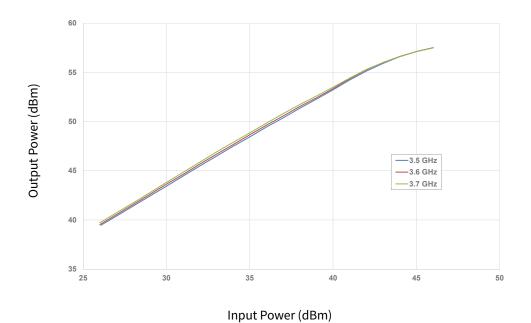
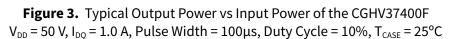
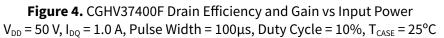





Figure 2. CGHV37400F Output Power and Drain Efficiency vs Frequency $V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 46 \text{ dBm}, \text{Pulse Width} = 100 \mu \text{s}, \text{Duty Cycle} = 10\%,$ $T_{CASE} = 25^{\circ}\text{C}$

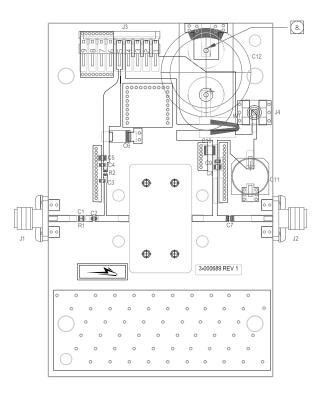


Typical Performance

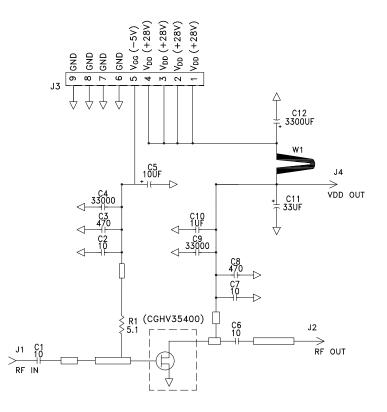
Rev. 2.0, 2022-8-23

CGHV37400F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16W, 0603	1
C1	CAP, 6.8pF, +/-0.25%, 250V, 0603	1
C2, C7, C8	CAP, 10.0pF, +/-1%, 250V, 0805	3
С3	CAP, 10.0pF, +/-5%, 250V, 0603	1
C4, C9	CAP, 470pF, 5%, 100V, 0603, X	2
C5	CAP, 33000pF, 0805, 100V, X7R	1
C6	CAP, 10µF 16V TANTALUM	1
C10	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C11	CAP, 33μF, 20%, G CASE	1
C12	CAP, 3300μF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV37400F	1


Electrostatic Discharge (ESD) Classifications

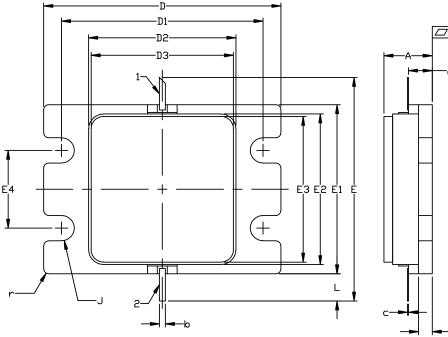
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

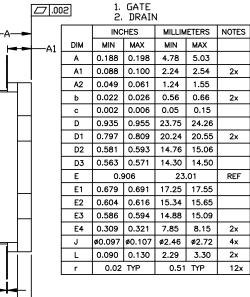

Rev. 2.0, 2022-8-23

CGHV37400F-AMP Application Circuit Outline

CGHV37400F-AMP Application Circuit Schematic

Rev. 2.0, 2022-8-23


CGHV37400F



Product Dimensions CGHV37400F (Package Type – 440217)

NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

-A2

Rev. 2.0, 2022-8-23

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.7	GHz
Power Output	400	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value

Parameter	Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Rev. 2.0, 2022-8-23

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV37400F	GaN HEMT	Each	Dispersion of the second
CGHV37400F-AMP	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2017-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 2.0, 2022-8-23